
TMS320VC5501/5502 DSP
Direct Memory Access (DMA) Controller

Reference Guide

Literature Number: SPRU613G
March 2005

3

Preface

Read This First

About This Manual

This manual describes the features and operation of the direct memory access
(DMA) controller that is available on the TMS320VC5501 and
TMS320VC5502 digital signal processors (DSPs) in the TMS320C55x™
(C55x™) DSP generation. This DMA controller allows movement of data
among internal memory, external memory, and peripherals to occur without
intervention from the CPU and in the background of CPU operation.

Notational Conventions

This document uses the following conventions:

� In most cases, hexadecimal numbers are shown with the suffix h. For
example, the following number is a hexadecimal 40 (decimal 64):

40h

� Similarly, binary numbers often are shown with the suffix b. For example,
the following number is the decimal number 4 shown in binary form:

0100b

Related Documentation From Texas Instruments

The following documents describe the C55x devices and related support tools.
Copies of these documents are available on the Internet at www.ti.com.
Tip: Enter the literature number in the search box provided at www.ti.com.

TMS320C55x Technical Overview (literature number SPRU393). This
overview is an introduction to the TMS320C55x DSPs, the latest
generation of fixed-point DSPs in the TMS320C5000™ DSP platform.
Like the previous generations, this processor is optimized for high
performance and low-power operation. This book describes the CPU
architecture, low-power enhancements, and embedded emulation
features.

Related Documentation From Texas Instruments

4

TMS320C55x DSP CPU Reference Guide (literature number SPRU371)
describes the architecture, registers, and operation of the CPU for the
TMS320C55x DSPs.

TMS320C55x DSP Peripherals Reference Guide (literature number
SPRU317) describes the peripherals, interfaces, and related hardware
that are available on TMS320C55x DSPs.

TMS320C55x DSP Algebraic Instruction Set Reference Guide (literature
number SPRU375) describes the TMS320C55x DSP algebraic
instructions individually. Also includes a summary of the instruction set,
a list of the instruction opcodes, and a cross-reference to the mnemonic
instruction set.

TMS320C55x DSP Mnemonic Instruction Set Reference Guide (literature
number SPRU374) describes the TMS320C55x DSP mnemonic
instructions individually. Also includes a summary of the instruction set,
a list of the instruction opcodes, and a cross-reference to the algebraic
instruction set.

TMS320C55x Optimizing C/C++ Compiler User’s Guide (literature number
SPRU281) describes the TMS320C55x™ C/C++ Compiler. This C/C++
compiler accepts ISO standard C and C++ source code and produces
assembly language source code for TMS320C55x devices.

TMS320C55x Assembly Language Tools User’s Guide (literature number
SPRU280) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for TMS320C55x devices.

TMS320C55x DSP Programmer’s Guide (literature number SPRU376)
describes ways to optimize C and assembly code for the TMS320C55x
DSPs and explains how to write code that uses special features and
instructions of the DSPs.

Trademarks

TMS320, TMS320C5000, TMS320C55x, and C55x are trademarks of
Texas Instruments.

Trademarks are the property of their respective owners.

Related Documentation From Texas Instruments / Trademarks

Contents

5

Contents

1 Introduction to the DMA Controller 10.
1.1 Key Features of the DMA Controller 10.
1.2 Block Diagram of the DMA Controller 10.
1.3 DMA Requests Versus CPU Requests for Internal Memory 11.

2 Channels and Port Accesses 12.

3 Channel Auto-initialization Capability 14.
3.1 Auto-initialization with Unchanging Context 17.
3.2 Auto-initialization with Changing Context 18.

4 Service Chain 19.
4.1 Service Chain Example 20.

5 Units of Data: Byte, Element, Frame, and Block 22.

6 Start Addresses in a Channel 23.
6.1 Start Address in Memory 23.
6.2 Start Address in I/O Space 24.

7 Updating Addresses in a Channel 25.

8 Data Burst Capability 26.

9 Data Packing 27.

10 Write Posting: Buffering Writes to Internal Memory 29.

11 Synchronizing Channel Activity to an Event 30.
11.1 Checking the Synchronization Status 31.
11.2 Dropped Synchronization Event 31.

12 Monitoring Channel Activity 32.
12.1 Channel Interrupt 33.
12.2 Time-Out Error Condition 34.
12.3 Address Error Condition 34.
12.4 Bus Error Interrupt 35.

13 Latency in DMA Transfers 36.

Contents

6

14 Power, Emulation, and Reset Considerations 37.
14.1 Reducing Power Consumed by the DMA Controller (Idle Configurations) 37.
14.2 Emulation Modes of the DMA Controller 37.
14.3 DMA Controller after DSP Reset 37.

15 DMA Controller Registers 38.
15.1 Global Control Register (DMAGCR) 39.
15.2 Global Time-Out Control Register (DMAGTCR) 40.
15.3 Channel Control Register (DMACCR) 42.
15.4 Interrupt Control Register (DMACICR) and Status Register (DMACSR) 49.
15.5 Source and Destination Parameters Register (DMACSDP) 55.
15.6 Source Start Address Registers (DMACSSAL and DMACSSAU) 60.
15.7 Destination Start Address Registers (DMACDSAL and DMACDSAU) 61.
15.8 Element Number Register (DMACEN) and Frame Number Register (DMACFN) 62.
15.9 Element Index Registers (DMACSEI, DMACDEI) and Frame Index Registers

(DMACSFI, DMACDFI) 64.
15.10 Source Address Counter (DMACSAC) and

Destination Address Counter (DMACDAC) 67.

Revision History 69.

Figures

7Contents

Figures

1 Conceptual Block Diagram of the DMA Controller Connections 11.
2 The Two Parts of a DMA Transfer 12.
3 Registers for Controlling a Channel’s Context 13.
4 Channel Control Register (DMACCR) 14.
5 Auto-initialization Sequence with Unchanging Context (REPEAT = 1) 17.
6 Auto-initialization Sequence with Changing Context (REPEAT = 0) 18.
7 One Possible Configuration for the Service Chains 19.
8 Service Chain Applied to Three DMA Ports 21.
9 High-Level Memory Map for TMS320C55x DSPs 24.
10 High-Level I/O Map for TMS320C55x DSPs 25.
11 Triggering a Channel Interrupt Request 33.
12 Global Control Register (DMAGCR) 39.
13 Global Time-Out Control Register (DMAGTCR) 40.
14 Channel Control Register (DMACCR) 42.
15 Interrupt Control Register (DMACICR) and Status Register (DMACSR) 50.
16 Source and Destination Parameters Register (DMACSDP) 56.
17 Source Start Address Registers (DMACSSAL and DMACSSAU) 60.
18 Destination Start Address Registers (DMACDSAL and DMACDSAU) 62.
19 Element Number Register (DMACEN) and

Frame Number Register (DMACFN) 63.
20 Element Index Registers (DMACSEI, DMACDEI) and

Frame Index Registers (DMACSFI, DMACDFI) 66.
21 Channel Source Address Counter (DMACSAC) and

Channel Destination Address Counter (DMACDAC) 67.

Tables

8

Tables

1 Event and Non-Event Driven Ports 12.
2 Channel Control Register (DMACCR) Field Descriptions 15.
3 Activity Shown in Figure 8 20.
4 Registers Used to Define the Start Addresses for a DMA Transfer 23.
5 Data Packing Performed by the DMA Controller 27.
6 32-bit Data Packing Conditions 28.
7 16-bit Data Packing Conditions 28.
8 Event and Non-Event Driven Ports 30.
9 DMA Controller Operational Events and Their Associated Bits and Interrupts 32.
10 Registers of the DMA Controller 38.
11 DMAGCR Bit Field Descriptions 40.
12 DMAGTCR Bit Field Descriptions 41.
13 DMACCR Bit Field Descriptions 43.
14 Synchronization Event Mapping for the TMS320VC5501/5502 DSPs 48.
15 DMACICR Bit Field Descriptions 50.
16 DMACSR Bit Field Descriptions 53.
17 DMACSDP Bit Field Descriptions 56.
18 DMACSSAL Bit Field Description 61.
19 DMACSSAU Bit Field Description 61.
20 DMACDSAL Bit Field Description 62.
21 DMACDSAU Bit Field Description 62.
22 DMACEN Bit Field Description 63.
23 DMACFN Bit Field Description 63.
24 DMACSEI Bit Field Description 66.
25 DMACSFI Bit Field Description 66.
26 DMACDEI Bit Field Description 67.
27 DMACDFI Bit Field Description 67.
28 DMACSAC Bit Field Description 67.
29 DMACDAC Bit Field Description 67.
30 Document Revision History 69.

9

DMA Controller

This document describes the direct memory access (DMA) controller of the
TMS320VC5501/TMS320VC5502 digital signal processors (DSPs). This
DMA controller allows movement of data among internal memory, external
memory, and peripherals to occur without intervention from the CPU and in the
background of CPU operation.

Introduction to the DMA Controller

DMA Controller10 SPRU613G

1 Introduction to the DMA Controller
Acting in the background of CPU operation, the DMA controller can transfer
data among internal memory, external memory, and on-chip peripherals.

1.1 Key Features of the DMA Controller

The DMA controller has the following important features:

� Operation that is independent of the CPU.

� Four standard ports: Two for internal dual-access RAM (DARAM), one for
external memory, and one for peripherals.

� Six channels, which allow the DMA controller to keep track of the context
of six independent block transfers among the standard ports.

� Bits for assigning each channel a low priority or a high priority. For details,
see Service Chain on page 19.

� Event synchronization. DMA transfers in each channel can be made
dependent on the occurrence of selected events. For details, see
Synchronizing Channel Activity on page 30.

� An interrupt for each channel. Each channel can send an interrupt to the
CPU on completion of certain operational events. See Monitoring Channel
Activity on page 32.

� Software-selectable options for updating addresses for the sources and
destinations of data transfers.

� A dedicated idle domain. You can put the DMA controller into a low-power
state by turning off this domain. Each multichannel buffered serial port
(McBSP) on the C55x DSP has the ability to temporarily take the DMA
domain out of this idle state when the McBSP needs the DMA controller.

To read about the registers used to program the DMA controller, see section
15 on page 38.

1.2 Block Diagram of the DMA Controller

Figure 1 is a conceptual diagram of connections between the DMA controller
and other parts of the DSP. The DMA controller has four ports:

� Two ports for internal dual-access RAM (DARAM). For ease of reference,
these ports are called internal memory port 0 and internal memory port 1
throughout this document.

� One port for external memory. The external memory interface (EMIF)
connects the port to the external memory.

� One port for peripherals. A peripheral bus controller connects the port to
the peripherals.

Introduction to the DMA Controller

11DMA ControllerSPRU613G

Data transfers among the ports occur in the six DMA channels. (The DMA
channels are described on page 12.) It is possible for multiple channels to
request access to the same port at the same time. To arbitrate simultaneous
requests, the DMA controller has one programmable service chain that is used
by each of the ports. For details on the service chain, see page 19.

Figure 1. Conceptual Block Diagram of the DMA Controller Connections

TMS320VC5501/5502 DSP

DMA controller

EMIF

Peripheral
bus

controller

DARAM

External memory

Peripherals

Port

Port

PortPort

Port

Channels

0-5

1.3 DMA Requests Versus CPU Requests for Internal Memory

If the CPU and the DMA controller simultaneously request access to the same
DARAM block in internal memory, CPU requests always have priority over
DMA requests. The DMA requests to a DARAM block will be serviced when
there are no more CPU requests. Refer to the device-specific data manual for
specific information on the start and end addresses for each DARAM block.

Channels and Port Accesses

DMA Controller12 SPRU613G

2 Channels and Port Accesses

The DMA controller has six paths, called channels, to transfer data among the
four ports (two for DARAM, one for external memory, and one for peripherals).
Each channel reads data from one port (from the source) and writes data to
that same port or another port (to the destination).

Each channel has a first in, first out (FIFO) buffer that allows the data transfer
to occur in two stages (see Figure 2):

Port read access Transfer of data from the source port to the channel
FIFO buffer.

Port write access Transfer of data from the channel FIFO buffer to the
destination port.

The FIFO buffer in each channel is eight 32-bit words deep.

Figure 2. The Two Parts of a DMA Transfer

n = 0, 1, 2, 3, 4, or 5

Source
port

Destination
port

Channel n
FIFO buffer

Read access Write access

The different ports in the DMA can be categorized as event driven and
non−event driven (see Table 1). This difference between ports is significant
when synchronization is used to transfer data, as described in section 11, page
30.

Table 1. Event and Non-Event Driven Ports

Port Category

DARAM Non-event driven

External memory Non-event driven

Peripheral Event driven

Channels and Port Accesses

13DMA ControllerSPRU613G

The set of conditions under which transfers occur in a channel is called the
channel context. Each of the six channels contains a register structure for
programming and updating the channel context (see Figure 3). Your code
modifies the configuration registers. When it is time for data transferring, the
contents of the configuration registers are copied to the working registers, and
the DMA controller uses the working register values to control channel activity.
The copy from the configuration registers to the working registers occurs
whenever your code enables the channel (EN = 1 in DMACCR). In addition,
if the auto-initialization mode is on (AUTOINIT = 1 in DMACCR), the copy
occurs between block transfers. For more information about the DMA
controller registers, see page 38.

Some configuration registers can be programmed for the next block transfer
while the DMA is still running the current context from the working registers.
The next transfer will use the new configuration without stopping the DMA. The
configuration registers that should not be configured in this manner are
DMAGCR, DMAGTCR, DMACSDP, DMACCR, DMACICR and DMACSR.
Modification of these registers while the DMA channel is running may cause
unpredictable operation of the channel.

Figure 3. Registers for Controlling a Channel’s Context

DMACSDP

DMACCR

DMACICR

DMACSR

DMACSSAL

DMACSSAU

DMACDSAL

DMACDSAU

DMACEN

DMACFN

Configuration registers
(programmed by code)

DMACSDP copy

DMACCR copy

DMACICR copy

DMACSR copy

DMACSSAL copy

DMACSSAU copy

DMACDSAL copy

DMACDSAU copy

DMACEN copy

DMACFN copy

Working registers
(used by DMA controller)

Automatically copied
when channel enabled,

and between block transfers
in auto-initialization mode

DMACSFI

DMACSEI

DMACDEI

DMACDFI

DMACSAC

DMACDAC

DMACSFI copy

DMACSEI copy

DMACDEI copy

DMACDFI copy

DMACSAC copy

DMACDAC copy

Channel Auto-initialization Capability

DMA Controller14 SPRU613G

3 Channel Auto-initialization Capability

After a block transfer is completed (all of the elements and frames in a block
have been moved), the DMA controller automatically disables the channel. If
it is necessary for the channel to be used again, the CPU can reprogram the
new channel context and re-enable the DMA channel, or the DMA controller
can automatically initialize the new context and re-enable the channel.

When auto-initialization is used, after each block transfer is completed, the
DMA controller automatically recopies the channel context from the
configuration registers to the working registers and re-enables the channel
allowing the channel to run again. Auto-initialization is enabled by setting the
AUTOINIT bit in the channel controller register (DMACCR).

Two additional bits in DMACCR, REPEAT and ENDPROG, are used during
the auto-initialization operation. REPEAT controls whether the DMA controller
waits for an indication from the CPU that the configuration registers are ready
to be copied. ENDPROG is a handshaking bit used to communicate between
the CPU and the DMA controller regarding the state of the register copy
process. Figure 4 shows DMACCR and Table 2 describes AUTOINIT,
REPEAT, and ENDPROG. For a complete description of DMACCR, see
section 15.3.

There are two methods for using auto-initialization. The same channel context
can be repeated on each block transfer, or a new context can be provided for
each transfer. These two cases are explained in the following sections.

Figure 4. Channel Control Register (DMACCR)

15 14 13 12 11 10 9 8

ENDPROG REPEAT AUTOINIT

R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 1 0

Legend: R = Read; W = Write; -n = Value after DSP reset

Channel Auto-initialization Capability

15DMA ControllerSPRU613G

Table 2. Channel Control Register (DMACCR) Field Descriptions

Bit Field Value Description

11 ENDPROG End-of-programming bit. Each DMA channel has two sets of registers:
configuration registers and working registers. When block transfers occur
repeatedly because of auto-initialization (AUTOINIT = 1), you can change the
context for the next DMA transfer by writing to the configuration registers
during the current block transfer. At the end of the current transfer, the contents
of the configuration registers are copied into the working registers, and the
DMA controller begins the next transfer using the new context. For proper
auto-initialization, the CPU must finish programming the configuration
registers before the DMA controller copies their contents.

The DMA controller automatically clears the ENDPROG bit after copying the
configuration registers to the working registers. The CPU can then program the
DMA channel context for the next iteration of the transfer by programming the
configuration registers.

To make sure auto-initialization waits for the CPU, follow this procedure:

1) Make auto-initialization wait for ENDPROG = 1 by clearing the REPEAT
bit (REPEAT = 0)

2) Poll for ENDPROG = 0, which indicates that the DMA controller has
finished copying the previous context. The configuration registers can
now be programmed for the next iteration.

3) Program the configuration registers.

4) Set ENDPROG (ENDPROG = 1) to indicate the end of register
programming.

0 Configuration registers ready for programming / Programming in progress.

1 End of programming.

9 REPEAT Repeat condition bit. If auto-initialization is selected for a channel
(AUTOINIT = 1), REPEAT specifies one of two special repeat conditions:

0 Repeat only if ENDPROG = 1.

Once the current DMA transfer is complete, auto-initialization will wait for the
end-of-programming bit (ENDPROG) bit to be set.

1 Repeat regardless of ENDPROG.

Once the current DMA transfer is complete, auto-initialization occurs
regardless of whether ENDPROG is 0 or 1.

Channel Auto-initialization Capability

DMA Controller16 SPRU613G

Table 2. Channel Control Register (DMACCR) Field Descriptions (Continued)

Bit DescriptionValueField

8 AUTOINIT Auto-initialization bit. The DMA controller supports auto-initialization, which is
the automatic reinitialization of the channel between DMA block transfers. Use
AUTOINIT to enable or disable this feature.

0 Auto-initialization is disabled.

Activity in the channel stops at the end of the current block transfer. To stop a
transfer immediately, clear the channel enable bit (EN).

1 Auto-initialization is enabled.

Once the current block transfer is complete, the DMA controller reinitializes the
channel and starts a new block transfer. To stop activity in the channel you have
two options:

� To stop activity immediately, clear the channel enable bit (EN = 0).

� To stop activity after the current block transfer, clear AUTOINIT
(AUTOINIT= 0).

Channel Auto-initialization Capability

17DMA ControllerSPRU613G

3.1 Auto-initialization with Unchanging Context

If the desired context for the channel needs to be repeated but does not need
to be changed, then the DMA controller is configured with AUTOINIT = 1 and
REPEAT = 1. When REPEAT = 1, the DMA controller ignores the state of the
ENDPROG handshaking bit. After the CPU has initially configured the DMA
channel, no other CPU intervention is required to keep the channel running.
A detailed sequence of events in this mode is shown in Figure 5.

Figure 5. Auto-initialization Sequence with Unchanging Context (REPEAT = 1)

The CPU programs
desired channel context

into the configuration
registers

The CPU sets AUTOINIT=1
and REPEAT=1 to select

the correct auto-initialization
mode

The CPU sets EN=1 to
enable the DMA channel

The DMA controller
transfers the block of data
according to the channel

context

When the block transfer is
complete, the DMA disables

the channel (EN = 0) and
recopies the configuration

registers to the working
registers.

The DMA controller
reenables the channel

(EN = 1)

Channel Auto-initialization Capability

DMA Controller18 SPRU613G

3.2 Auto-initialization with Changing Context

If the desired context for the channel needs to be repeated and is not the same
on each block transfer, then the DMA controller must be configured with
AUTOINIT = 1 and REPEAT = 0. When REPEAT = 0, the DMA controller
waits for the CPU to write ENDPROG = 1 before it copies the configuration
registers. This provides handshaking for the DMA to prevent it from copying
the registers while they are still being configured by the CPU. A detailed
sequence of events in this mode is shown in Figure 6.

Figure 6. Auto-initialization Sequence with Changing Context (REPEAT = 0)

The CPU sets AUTOINIT=1 and
clears REPEAT= 0 to select the
correct auto-initialization mode

The CPU programs the desired
channel context for the first block

transfer into the configuration
registers and enables the channel

(EN = 1)

The CPU sets ENDPROG = 1 to
indicate it is finished programming

the configuration registers.

The DMA controller copies
the configuration registers to

the working registers

The DMA controller clears
ENDPROG = 0 to indicate it

is finished copying the
configuration registers and

they are available to be
reprogrammmed by the CPU.

The DMA controller enables
the channel and transfers

the block of data according
to the channel context.

ENDPROG = 0 after reset

CPU Polls for
ENDPROG = 0

?

The CPU programs the desired
channel context for the next block

transfer into the configuration
registers.

DMA waits for
ENDPROG = 1

?

Yes

No

No

Yes

When the block transfer is
complete, the DMA disables

the channel (EN = 0).

Handshaking
Using ENDPROG

Service Chain

19DMA ControllerSPRU613G

4 Service Chain

Each of the ports of the DMA controller can arbitrate simultaneous access
requests sent by the six DMA channels. Each of the ports has an
independently functioning service chain—a software- and
hardware-controlled scheme for servicing access requests. Although the four
service chains function independently, they share a common configuration.
For example, if you disable channel 2, it is disabled in all four ports, and if you
make channel 4 high-priority, it is high-priority in all four of the ports. One
possible configuration for the service chains is shown in Figure 7. Important
characteristics of the service chain are listed after the figure.

Section 4.1 contains an example that shows a service chain configuration
applied to three ports.

Figure 7. One Possible Configuration for the Service Chains

Channel
0

High Priority

Channel
1

Low Priority

Channel
2

High Priority

Channel
3

Low Priority

Channel
4

Low Priority

Channel
5

High Priority

� The channels have a programmable priority level. Each channel has a
PRIO bit in DMACCR for selecting a high priority or a low priority. The DMA
controller only services the low-priority items when all the high-priority
items are done or stalled. After a DSP reset, all channels are low priority.

In the figure, channels 0, 2, and 5 are high-priority (in each of these
channels, PRIO = 1). DMA channels 1, 3, and 4 are low priority (in each of
these channels, PRIO = 0).

� The channels have fixed positions in the service chain. Regardless of the
programmed priorities, the port checks the channels in a repeating circular
sequence: 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, and so on. At each position in the
service chain, the port checks whether the channel is ready and able to
be serviced. If so, it is serviced; otherwise, the port skips to the next
position. After a DSP reset, the port restarts its circular sequence,
beginning with channel 0.

Service Chain

DMA Controller20 SPRU613G

� The channels can be individually connected or disconnected from the
service chain through software. If a channel is enabled (EN = 1 in
DMACCR), it is connected to the service chain; if it is disabled (EN = 0),
it is disconnected. After a DSP reset, all channels are disconnected.

In the figure, only channel 1 is disconnected. As a port checks the
channels in its repeating circular sequence, it will keep skipping channel 1
until the channel is reconnected.

� If a channel is tied to a synchronization event, the channel does not
generate a DMA request (and, therefore, cannot be serviced) until the
synchronization event occurs.

4.1 Service Chain Example

Figure 8 shows a DMA service chain applied to a DARAM port, the external
memory port, and the peripheral port. The service chain has the following
programmed characteristics.

� Channels 0, 2, and 5 are high-priority (PRIO = 1 in DMACCR). Channels
1, 3, and 4 are low-priority (PRIO = 0).

� Channels 1, 2, and 4 are enabled (EN = 1 in DMACCR). Channels 0, 3,
and 5 are disabled (EN = 0).

Table 3 summarizes the activity at the ports in the figure.

Table 3. Activity Shown in Figure 8

Port This Port Arbitrates …

DARAM Write access requests from channel 2
Read access requests from channel 4

External memory Write access requests from channel 1
Write access requests from channel 4

Peripheral Read access requests from channel 1
Read access requests from channel 2

Finally, notice that for each port in the figure, there is a channel that is
connected to the service chain but does not use the port. For example, the
peripheral port is not used by channel 4. If channel 4 were redefined to include
the peripheral port as source or destination, the port would handle channel 4
according to its position and priority in the service chain.

Service Chain

21DMA ControllerSPRU613G

Figure 8. Service Chain Applied to Three DMA Ports

Ch 0 Ch 2 Ch 5

Ch 1 Ch 3 Ch 4

DARAM port: Only used by channel 2 and channel 4

External memory port: Only used by channel 1 and channel 4

Peripheral port: Only used by channel 1 and channel 2

Channel 2
FIFO buffer

Channel 4
FIFO buffer

Read access

Write access

Write access

Read access

Ch 0 Ch 2 Ch 5

Ch 1 Ch 3 Ch 4

Ch 0 Ch 2 Ch 5

Ch 1 Ch 3 Ch 4

Channel 1
FIFO buffer

Write access

Read access

High-priority: 0, 2, 5
Low-priority: 1, 3, 4

Disabled: 0, 3, 5
Enabled: 1, 2, 4

Configuration for
the service chains

Units of Data: Byte, Element, Frame, and Block

DMA Controller22 SPRU613G

5 Units of Data: Byte, Element, Frame, and Block

This documentation on the DMA controller refers to data in four levels of
granularity:

Byte An 8-bit value. A byte is the smallest unit of data transferred in
a DMA channel.

Element One or more bytes to be transferred as a unit. Depending on the
programmed data type, an element is an 8-bit, 16-bit, or a 32-bit
value. An element transfer cannot be interrupted; all of its bytes
are transferred to a port before another channel can take control
of the port.

Frame One or more elements to be transferred as a unit. A frame trans-
fer can be interrupted between element transfers.

Block One or more frames to be transferred as a unit. Each channel
can transfer one block of data (once or multiple times). A block
transfer can be interrupted between frame transfers and ele-
ment transfers.

For each of the six DMA channels, you can define the number of frames in a
block (with DMACFN), the number of elements in a frame (with DMACEN), and
the number of bytes in an element (with the DATATYPE bits in DMACSDP).
For descriptions of DMACFN, DMACEN, DMACSDP, and other registers of
the DMA controller, see section 15 on page 38.

Start Addresses in a Channel

23DMA ControllerSPRU613G

6 Start Addresses in a Channel
During a data transfer in a DMA channel, the first address at which data is read
is called the source start address. The first address to which the data is written
is called the destination start address. These are byte addresses. From the
standpoint of the DMA controller, every 8 bits in memory or I/O space has its
own address. Each channel contains the following registers for specifying the
start addresses:

Table 4. Registers Used to Define the Start Addresses for a DMA Transfer

Register Load With …

DMACSSAL Source start address (lower part)

DMACSSAU Source start address (upper part)

DMACDSAL Destination start address (lower part)

DMACDSAU Destination start address (upper part)

The following sections explain how to load the start address registers for
memory accesses and I/O accesses. The DMA controller can access all of the
internal and external memory and all of I/O space (which contains registers for
the DSP peripherals).

6.1 Start Address in Memory

Figure 9 is a high-level memory map for TMS320C55x DSPs. The diagram
shows both the word addresses (23-bit addresses) used by the CPU and byte
addresses (24-bit addresses) used by the DMA controller. To load the
source/destination start address registers:

1) Identify the correct start address. Check for any alignment constraint for
the data type; see the description for the DATATYPE bits in section 15.5
(page 55). If you have a word address, shift it left by 1 bit to form a byte
address with 24 bits. For example, word address 02 4000h should be
converted to byte address 04 8000h.

2) Load the 16 least significant bits (LSBs) of the byte address into
DMACSSAL (for source) or DMACDSAL (for destination).

3) Load the 8 most significant bits (MSBs) of the byte address into the 8 LSBs
of DMACSSAU (for source) or DMACDSAU (for destination).

Note:

Word addresses 00 0000h–00 005Fh (which correspond to byte addresses
00 0000h–00 00BFh) are reserved for the memory-mapped registers
(MMRs) of the DSP CPU.

Start Addresses in a Channel

DMA Controller24 SPRU613G

Figure 9. High-Level Memory Map for TMS320C55x DSPs

00 0000-00 00BF

Memory

Main data page 0

Main data page 1

Main data page 2

Main data page 127

.

.

.

.

.

.

.

.

.

.

.

.

Word Addresses

.

.

.

.

.

.

02 0000-03 FFFF

04 0000-05 FFFF

FE 0000-FF FFFF

(Hexadecimal Ranges)

MMRs

00 00C0-01 FFFF00 0060-00 FFFF

01 0000-01 FFFF

02 0000-02 FFFF

7F 0000-7F FFFF

00 0000-00 005F

Byte Addresses
(Hexadecimal Ranges)

6.2 Start Address in I/O Space

Figure 10 is an I/O space map for TMS320C55x DSPs. The diagram shows
both the word addresses (16-bit addresses) used by the CPU and byte
addresses (17-bit addresses) used by the DMA controller. To load the
source/destination start address registers:

1) Identify the correct start address. Check for any alignment constraint for
the data type; see the description for the DATATYPE bits in section 15.5
(page 55). If you have a word address, shift it left by 1 bit to form a byte
address with 17 bits. For example, word address 8000h should be
converted to byte address 1 0000h.

2) Load the 16 least significant bits (LSBs) of the byte address into
DMACSSAL (for source) or DMACDSAL (for destination).

3) Load the most significant bit (MSB) of the byte address into the LSB of
DMACSSAU (for source) or DMACDSAU (for destination).

Updating Addresses in a Channel

25DMA ControllerSPRU613G

Figure 10. High-Level I/O Map for TMS320C55x DSPs

I/O Space
Word Addresses

(Hexadecimal Range)

0000-FFFF

Byte Addresses
(Hexadecimal Range)

0 0000-1 FFFF

7 Updating Addresses in a Channel

During data transfers in a DMA channel, the DMA controller begins its read and
write accesses at the start addresses you specify (as described in section 6).
In many cases, after a data transfer has begun, these addresses must be
updated so that data is read and written at consecutive or indexed locations.
You can configure address updates at two levels:

� Block-level address updates. In the auto-initialization mode
(AUTOINIT = 1 in DMACCR), block transfers can occur one after another
until you turn off auto-initialization or disable the channel. If you want
different start addresses for the block transfers, you can update the start
addresses between the block transfers.

� Element-level address updates. You can have the DMA controller update
the source address and/or the destination address after each element
transfer. You can make sure the source address points to the start of the
next element, and you can make sure the element will be precisely
positioned at the destination. Choose an addressing mode for the source
with the SRCAMODE bits in DMACCR. Choose an addressing mode for
the destination with the DSTAMODE bits in DMACCR.

Data Burst Capability

DMA Controller26 SPRU613G

8 Data Burst Capability

Data bursts can be used to improve DMA throughput if one or both of the ports
associated with the DMA channel support burst capability. When burst is
enabled, the DMA controller executes a burst of four elements each time a
channel is serviced instead of moving a single element. The DARAM ports
support burst capability. The EMIF port supports bursts only if the requested
address range is configured as a synchronous (burst) memory type. If the
requested address is configured as asynchronous memory, the DMA will
perform four single accesses to move the burst of data. The peripheral port
does not support burst capability. The DMA will perform four single
peripheral-port accesses to move the burst data.

If burst is used, the start addresses for the source and destination should be
aligned on a burst boundary. Burst boundaries correspond to byte addresses
with 0h as the least significant 4 bits.

To use burst, the following conditions should be met:

� The start address for the port on which burst is enabled should be on a
burst boundary.

� The element index should be 1.

� The frame index should cause each burst access to align on a burst
boundary.

� (Element number x Element size) should align on a burst boundary. This
means at the end of each frame the address should be aligned on a burst
boundary.

If both the source and destination have burst enabled, but the source address
does not start on a burst boundary, the source burst will be automatically
disabled internally. The source will load the channel FIFO and, when enough
data is available, a destination burst will be executed. If the destination does
not start on a burst boundary, the destination accesses will be performed as
single accesses.

If the frame size is not a multiple of 4 elements, the remaining 1 to 3 elements
at the end of the frame will be transferred as single (nonburst) accesses.

Data Packing

27DMA ControllerSPRU613G

9 Data Packing

The DMA controller can perform data packing to double or quadruple the
amount of data passed to the destination or source in a single transfer. For
example, if an 8-bit data type is selected and the destination port has a 32-bit
data bus, four 8-bit pieces of data can be packed into 32 bits before being sent
to the destination. The resultant packed data depends on the bus size for the
destination or source port as shown in Table 5.

Table 5. Data Packing Performed by the DMA Controller

Port Data Type Data Packing

DARAM 8-bit Four 8-bit data values packed into 32 bits

16-bit Two 16-bit data values packed into 32 bits

EMIF 8-bit Four 8-bit data values packed into 32 bits

16-bit Two 16-bit data values packed into 32 bits

Peripheral 8-bit Two 8-bit data values packed into 16 bits

The addressing mode used for the destination and source ports also affects
whether or not the DMA controller tries to pack data. The conditions that have
to be met for both 32-bit and 16-bit data packing are listed in Table 6 and
Table 7, respectively.

Data Packing

DMA Controller28 SPRU613G

Table 6. 32-bit Data Packing Conditions†

Data Type
Byte Address
Lower Bits Addressing Mode Element Index Access

8-bit 00b Post Increment - Packed

Single/Double Index 1 Packed

Other Single

Constant - Single

11b Single/Double Index -1 Packed

Other - Single

Other - - Single

16-bit 00b Post Increment - Packed

Single/Double Index 1 Packed

Other Single

Constant - Single

10b Single/Double Index -3 Packed

Other - Single

Other - - Single

† Remaining bytes to be transferred is greater than or equal to 4 bytes.

Table 7. 16-bit Data Packing Conditions†

Data Type
Byte Address
Lower Bits Addressing Mode Element Index Access

8-bit 00b or 10b Post Increment - Packed

Single/Double Index 1 Packed

Other Single

Constant - Single

11b or 01b Single/Double Index -1 Packed

Other - Single

† Remaining bytes to be transferred is greater than or equal to 2 bytes.

When using element synchronization, no data packing is performed when
reading from the source port if that source port is event driven (see section 2,
page 12). If the source port is non-event driven, data packing will be performed
if packing is enabled at the source (SRCPACK = 1), regardless of whether or
not element synchronization is used. However, only one element will be
transferred to the destination on every event.

Write Posting: Buffering Writes to Internal Memory

29DMA ControllerSPRU613G

10 Write Posting: Buffering Writes to Internal Memory

The DMA controller can take advantage of the write-posting capability of the
internal memory interface. When the write posting bit is set (WP = 1 in
DMACCR), the DMA controller can initiate a write and then can receive
acknowledgement from the internal memory interface before the data is
actually written to memory. The DMA controller is free to begin the next
operation while the internal memory interface assumes control of the posted
data.

When write posting is disabled (WP = 0), the DMA controller waits for the
internal memory interface to finish the memory access before continuing with
the next operation. It might be useful during debugging to disable write posting.

Synchronizing Channel Activity to an Event

DMA Controller30 SPRU613G

11 Synchronizing Channel Activity to an Event

Activity in a channel can be synchronized to an event in a DSP peripheral or
to an event signaled by the driving of an external interrupt pin. Using the SYNC
bits of DMACCR, you can specify which synchronization event (if any) triggers
activity.

Each channel also has an FS bit in DMACCR that allows you to choose among
two synchronization modes:

� Element synchronization mode (FS = 0) requires one event per element
transfer. When the selected synchronization event occurs, an element is
transferred from the channel FIFO buffer to the destination port. When all
the bytes of the current element are transferred, the channel makes no
more requests to the destination port until the next occurrence of the
synchronization event. The channel will request data from the source port
as described below.

� Frame synchronization mode (FS = 1) requires one event to trigger an
entire frame of elements. When the event occurs, an entire frame of
elements is transferred from the channel FIFO buffer to the destination
port. When all the elements in the frame are transferred, the channel
makes no more requests to the destination port until the next occurrence
of the event. The channel will request data from the source port as
described below.

If a synchronization event is specified and the source port is event driven (see
Table 8), the channel will not place an access request to the source port until
the event occurs. When the event occurs, the channel will take data from the
source port, place it in its FIFO buffer, and place an access request to the
destination port. Requests received by the source or destination ports are
handled according to the predefined position and the programmed priority of
the channel in the DMA service chain (see section 4, page 19).

Table 8. Event and Non-Event Driven Ports

Port Category

DARAM Non-event driven

External memory Non-event driven

Peripheral Event driven

Synchronizing Channel Activity to an Event

31DMA ControllerSPRU613G

On the other hand, if the source port being used is non-event driven, the
channel will place an access request to the source port immediately after it is
enabled (EN = 1 in DMACCR) without waiting for the event. For the remainder
of the block, the channel will continue to make source read requests to keep
the FIFO buffer filled. The read requests from the source will stop only when
the FIFO is full or when all of the source data for the current block has been
moved into the FIFO. The channel will not access more than one block at a
time. After the event occurs, the channel will transfer data from FIFO buffer to
the destination port. The amount of data that is transferred to the destination
port at each event depends on the use of frame or element synchronization.
The channel will request more data from the source port as soon as there is
space in the channel FIFO and as long as the entire block has not been
completely copied to the channel FIFO. Read or write requests to the different
ports are handled according to the predefined position and the programmed
priority of the channel in the DMA service chain (see page 6).

If you choose not to synchronize the channel (SYNC = 00000b), the channel
sends an access request to the source port as soon as the channel is enabled
(EN = 1 in DMACCR). Setting EN = 1 initiates the transfer of the entire block
defined for the channel.

11.1 Checking the Synchronization Status

Each channel has a synchronization flag (SYNC) in its status register,
DMACSR. When the synchronization event occurs, the DMA controller sets
the flag (SYNC = 1). The flag is cleared (SYNC = 0) as follows:
� If the source port is event driven, the SYNC bit is cleared when the source

port initiates the request placed by the DMA channel.
� If the source port is non-event driven, the SYNC bit is cleared when the

destination port initiates the request placed by the DMA channel.

11.2 Dropped Synchronization Event

If a synchronization event occurs before the DMA controller is done servicing
the previous one (before the DMA controller clears the SYNC bit in DMACSR),
a synchronization event has been dropped. The DMA controller responds to
an event drop in the following manner:
� After the current element transfer, activity in the channel stops.
� If the corresponding interrupt enable bit is set (DROPIE = 1 in DMACICR),

the DMA controller also sets the event drop status bit (DROP = 1 in
DMACSR) and sends an interrupt request to the CPU. For more details,
see Monitoring Channel Activity on page 32.

Before initiating the next DMA transfer, the CPU must clear the error condition
by making EN = 0 in DMACCR.

Monitoring Channel Activity

DMA Controller32 SPRU613G

12 Monitoring Channel Activity

The DMA controller can send an interrupt to the CPU in response to the
operational events listed in the following table. Each channel has interrupt
enable (IE) bits in the interrupt control register (DMACICR) and some
corresponding status bits in the status register (DMACSR). (DMACICR and
DMACSR are described in section 15.4 on page 49.) If one of the operational
events in the table occurs, the DMA controller checks the corresponding IE bit
and acts accordingly:

� If the IE bit is 1 (the interrupt is enabled), the DMA controller sets the
corresponding status bit and sends the associated interrupt request to the
CPU. DMACSR is automatically cleared if your program reads the
register.

� If the IE bit is 0, the DMA controller sets the corresponding status bit but
does not send an interrupt to the CPU.

DMACSR also has a SYNC bit that is used if you choose a synchronization
event for the channel. SYNC indicates when the selected synchronization
event has occurred (SYNC = 1) and when it has been serviced (SYNC = 0).
For more details about synchronization events, see Synchronizing Channel
Activity on page 30.

Table 9. DMA Controller Operational Events and Their Associated Bits and Interrupts

Operational Event Interrupt Enable Bit Status Bit Associated Interrupt

Address error has occurred AERRIE AERR Channel interrupt

Block transfer is complete BLOCKIE BLOCK Channel interrupt

Last frame transfer has started LASTIE LAST Channel interrupt

Frame transfer is complete FRAMEIE FRAME Channel interrupt

First half of current frame has been
transferred†

HALFIE HALF Channel interrupt

Synchronization event has been
dropped

DROPIE DROP Channel interrupt

Time-out error has occurred TIMEOUTIE TIMEOUT Channel interrupt

† For a frame with an odd number of elements, the half-frame event occurs as soon as the number of elements transferred is
greater than the number that remain to be transferred. For example, for a frame of five elements, the half-frame event occurs
when the DMA controller has transferred three of the elements.

Monitoring Channel Activity

33DMA ControllerSPRU613G

12.1 Channel Interrupt

Each of the six channels has its own interrupt. As shown Figure 11, the
channel interrupt is the logical OR of all the enabled operational events. You
can choose any combination of these events by setting or clearing the
appropriate interrupt enable (IE) bits in the interrupt control register
(DMACICR) for the channel. You can determine which event(s) caused the
interrupt by reading the bits in the status register (DMACSR) for the channel.
A read of DMACSR clears all of the status bits. DMACSR should be read each
time an interrupt occurs to clear the pending status bits.

Figure 11. Triggering a Channel Interrupt Request

Channel interrupt
request to CPU

AERRIE

AERR event

BLOCKIE

BLOCK event

LASTIE

LAST event

FRAMEIE

FRAME event

HALFIE

HALF event

DROPIE

DROP event

TIMEOUTIE

TIMEOUT event

As an example of using the interrupt enable bits, suppose you are monitoring
activity in channel 1, and suppose that in DMACICR:

AERRIE = 0
BLOCKIE = 0
LASTIE = 0
FRAMEIE = 1
HALFIE = 0
DROPIE = 1
TIMEOUTIE = 0

Monitoring Channel Activity

DMA Controller34 SPRU613G

When the current frame transfer is done or if a synchronization event is
dropped (see section 11.2 on page 31), the channel 1 interrupt request is sent
to the CPU. No other event can generate the channel 1 interrupt. To determine
whether one or both of the events triggered the interrupt, you can read the
DROP and FRAME bits in DMACSR.

The channel 1 interrupt sets its corresponding flag bit in an interrupt flag
register of the CPU. The CPU can respond to the interrupt or ignore the
interrupt.

For more details about DMACICR and DMACSR, see section 15.4 on page 49.

12.2 Time-Out Error Condition

The DMA controller has a time-out counter for each of the four DMA ports
(internal memory port 0, internal memory port 1, the external memory port, and
the peripheral port). The clock that controls the DMA controller runs on the fast
peripherals clock (SYSCLK1) that has been programmed inside the
TMS320VC5501/5502 DSPs. Once a DMA transfer is requested at one of the
ports, the corresponding time-out counter is incremented every SYSCLK1
cycle. If the transfer has not been completed within 512 SYSCLK1 cycles, a
time-out error signal is generated. The time-out counter for all four DMA ports
is disabled by default, but can be enabled for each individual port through the
DMAGTCR.

In response to a time-out error signal, activity in the affected DMA channel
stops. If the corresponding interrupt enable bit is set (TIMEOUTIE = 1 in
DMACICR), the DMA controller also sets the time-out status bit (TIMEOUT = 1
in DMACSR) and sends a channel interrupt request to the CPU. The CPU can
respond to the interrupt request or ignore the interrupt request.

Before the next DMA transfer is initiated, the CPU must clear the time-out error
condition by making EN = 0 in DMACCR.

12.3 Address Error Condition

If the DMA controller accesses a reserved address in the I/O space of the DSP,
an address error signal is generated in the DMA controller. In response, activity
in the effected DMA channel stops. If the corresponding interrupt enable bit is
set (AERRIE = 1 in DMACICR), the DMA controller also sets the address error
status bit (AERR = 1 in DMACSR) and sends a channel interrupt request to
the CPU. The CPU can respond to the interrupt request or ignore the interrupt
request.

Before the next DMA transfer is initiated, the CPU must clear the address error
condition by making EN = 0 in DMACCR.

Monitoring Channel Activity

35DMA ControllerSPRU613G

12.4 Bus Error Interrupt

The following actions by the CPU will cause the DMA controller to send a bus
error interrupt (BERRINT) request to the CPU. The CPU can respond to the
interrupt request or ignore the interrupt request.

� The CPU attempts to access a reserved address in the DMA register map.

� The CPU attempts to write an illegal/reserved value to a register or to a
field inside a register. Here are two important examples:

� The CPU attempts to load an address register with an unaligned
address (an address that is not properly aligned according to the
chosen data type).

� The CPU attempts to load an index register with an index that would
create an unaligned address.

Latency in DMA Transfers

DMA Controller36 SPRU613G

13 Latency in DMA Transfers

Each element transfer in a channel is composed of a read access (a transfer
from the source location to the channel buffer) and a write access (a transfer
from the channel buffer to the destination location). The time to complete this
activity depends on factors such as:

� The selected frequency of the fast peripherals clock (SYSCLK1) signal.
This signal, as propagated to the DMA controller, determines the timing
for all DMA transfers.

� Wait states or other extra cycles added by or resulting from an interface.

� Activity on other channels. Since channels are serviced in a sequential
order, the number of pending DMA service requests in the other channels
affects how often a given channel can be serviced. For more details on
how the channels are serviced, see Service Chain on page 19.

� The timing of synchronization events (if the channel is synchronized). The
DMA controller cannot service a synchronized channel until the
synchronization event has occurred. For more details on synchronization,
see Synchronizing Channel Activity on page 30.

The minimum (best-case) latency is determined by the ports used. On the
DARAM ports, one access can be performed every cycle if the DMA is not
competing with the CPU for access to the same memory block. The best-case
transfer rate for channels using the DARAM ports would be one cycle to read
at the source and one cycle to write at the destination. The minimum latency
for the EMIF port is determined by the EMIF settings, including the memory
type used, programmable timings, and any delays caused by the memory itself
(such as control of the ARDY pin). The latency for the peripheral port is
dependent on the peripherals being accessed and the configuration of the fast
and slow peripheral clocks supplied to those peripherals. As explained in
section 1.3, page 11, the CPU will always have higher priority than the DMA
controller for accesses to the same DARAM block in internal memory.

Power, Emulation, and Reset Considerations

37DMA ControllerSPRU613G

14 Power, Emulation, and Reset Considerations

The following sections describe how to put the DMA controller into a low-power
state, how to program the response of the DMA controller to debugger
breakpoints, and what values the DMA controller registers have after a DSP
reset.

14.1 Reducing Power Consumed by the DMA Controller (Idle Configurations)

The DSP is divided into idle domains that can be programmed to be idle or
active. The state of all domains is called the idle configuration. Any idle
configuration that disables the clock generator domain and/or the DMA
domain stops the DMA clock and, therefore, stops activity in the DMA
controller. The type of channel synchronization (if any) determines how quickly
the DMA controller stops:

� No synchronization (SYNC = 00000b in DMACCR). The DMA controller
stops after the entire block transfer is completed.

� Frame synchronization (SYNC is nonzero and FS = 1 in DMACCR). The
DMA controller stops after the current frame transfer is completed.

� Element synchronization (SYNC is nonzero and FS = 0 in DMACCR). The
DMA controller stops after the current element transfer is completed.

When the DMA domain is idle, there is one case when it can be temporarily
reactivated without a change in the idle configuration. If one of the
multichannel buffered serial ports (McBSPs) needs the DMA controller for a
data transfer, the DMA controller will leave its idle state to perform the data
transfer and then enter its idle state again.

14.2 Emulation Modes of the DMA Controller

The FREE bit of DMAGCR controls the behavior of the DMA controller when
an emulation breakpoint is encountered. If FREE = 0 (the reset value), a
breakpoint suspends DMA transfers. If FREE = 1, DMA transfers are not
interrupted by a breakpoint.

14.3 DMA Controller after DSP Reset

A DSP reset resets the DMA controller and the DMA configuration registers.
The register definitions that follow indicate the effects of a DSP reset on the
register contents.

DMA Controller Registers

DMA Controller38 SPRU613G

15 DMA Controller Registers
Table 10 lists the types of registers in the direct memory access (DMA)
controller. There are two registers that affect all channels: the global control
register (DMAGCR) and the global time-out control register (DMAGTCR). In
addition, for each of the DMA channels, there are 16 channel configuration
registers. For the I/O address of each register, see the data manual for your
TMS320C55x DSP.

If the CPU attempts to access a reserved address in the DMA register map,
the DMA controller will send a bus error interrupt (BERRINT) request to the
CPU. The CPU can respond to the interrupt request or ignore the interrupt
request.

Table 10. Registers of the DMA Controller

Register Description For Details, See ...

DMAGCR Global control register
(only one)

Page 39

DMAGTCR Global time-out control register
(only one)

Page 40

DMACCR Channel control register
(one for each channel)

Page 42

DMACICR Interrupt control register
(one for each channel)

Page 49

DMACSR Status register
(one for each channel)

Page 49

DMACSDP Source and destination parameters register
(one for each channel)

Page 55

DMACSSAL Source start address (lower part) register
(one for each channel)

Page 60

DMACSSAU Source start address (upper part) register
(one for each channel)

Page 60

DMACDSAL Destination start address (lower part) register
(one for each channel)

Page 61

DMACDSAU Destination start address (upper part) register
(one for each channel)

Page 61

DMACEN Element number register
(one for each channel)

Page 62

DMACFN Frame number register
(one for each channel)

Page 62

DMA Controller Registers

39DMA ControllerSPRU613G

Table 10. Registers of the DMA Controller (Continued)

Register For Details, See ...Description

DMACSEI Source element index register
(one for each channel)

Page 64

DMACSFI Source frame index register
(one for each channel)

Page 64

DMACDEI Destination element index register
(one for each channel)

Page 64

DMACDFI Destination frame index register
(one for each channel)

Page 64

DMACSAC Source address counter register
(one for each channel)

Page 67

DMACDAC Destination address counter register
(one for each channel)

Page 67

15.1 Global Control Register (DMAGCR)

The global control register (see Figure 12) is a 16-bit I/O-mapped register
used to set the emulation mode of the DMA controller.

Figure 12. Global Control Register (DMAGCR)

15 8

Reserved

R-0

7 3 2 1 0

Reserved FREE Reserved

R-0 R/W-0 R-0

Legend: R = Read; W = Write; -n = Value after reset

DMA Controller Registers

DMA Controller40 SPRU613G

Table 11. DMAGCR Bit FIeld Descriptions

Bit Field Value Description

15-3 Reserved Writing to these bits has no effect. Reading these bits returns 0s.

2 FREE Emulation mode bit. FREE controls the behavior of the DMA controller when
an emulation breakpoint is encountered:

0 A breakpoint suspends DMA transfers.

1 DMA transfers continue uninterrupted when a breakpoint occurs.

1-0 Reserved Writing to these bits has no effect. Reading these bits returns 0s.

15.2 Global Time-Out Control Register (DMAGTCR)

The global time-out control register is a 16-bit read/write register used to
enable or disable time-out counters on the DMA ports. If the time-out counters
are disabled, the DMA controller will never generate a time-out error condition
for these ports. For more details about the time-out error condition, see section
12.2 on page 34.

Figure 13. Global Time-Out Control Register (DMAGTCR)

15 8

Reserved

R-0

7 4 3 2 1 0

Reserved PTE ETE ITE1 ITE0

R-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend: R = Read; W = Write; -n = Value after reset

DMA Controller Registers

41DMA ControllerSPRU613G

Table 12. DMAGTCR Bit Field Descriptions

Bit Field Value Description

15-4 Reserved Writing to these bits has no effect. Reading these bits returns 0s.

3 PTE Peripheral port time-out counter enable bit. This bit
enables/disables the time-out counter used to monitor delays on
DMA requests to the peripheral port.

0b Time-out counter disabled

1b Time-out counter enabled

2 ETE External memory port time-out counter enable bit. This bit
enables/disables the time-out counter used to monitor delays on
DMA requests to the external memory port.

0b Time-out counter disabled

1b Time-out counter enabled

1 ITE1 Internal memory port 1 time-out counter enable bit. This bit
enables/disables the time-out counter used to monitor delays on
DMA requests to DARAM via internal memory port 1.

0b Time-out counter disabled

1b Time-out counter enabled

0 ITE0 Internal memory port 0 time-out counter enable bit. This bit
enables/disables the time-out counter used to monitor delays on
DMA requests to DARAM via internal memory port 0.

0b Time-out counter disabled

1b Time-out counter enabled

DMA Controller Registers

DMA Controller42 SPRU613G

15.3 Channel Control Register (DMACCR)

Each channel has a channel control register of the form shown in the following
figure. This I/O-mapped register enables you to:

� Choose how the source and destination addresses are updated
(SRCAMODE and DSTAMODE)

� Enable and control repeated DMA transfers (AUTOINIT, REPEAT, and
ENDPROG)

� Enable or disable write posting for accesses to the internal memory (WP)

� Enable or disable the channel (EN)

� Choose a low or high priority level for the channel (PRIO)

� Select element synchronization or frame synchronization (FS)

� Determine what synchronization event (if any) initiates a transfer in the
channel (SYNC)

Figure 14. Channel Control Register (DMACCR)

15 14 13 12 11 10 9 8

DSTAMODE SRCAMODE ENDPROG WP REPEAT AUTOINIT

R/W-00 R/W-00 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 4 0

EN PRIO FS SYNC

R/W-0 R/W-0 R/W-0 R/W-0 0000

Legend: R = Read; W = Write; -n = Value after reset

DMA Controller Registers

43DMA ControllerSPRU613G

Table 13. DMACCR Bit Field Descriptions

Bit Field Value Description

15-14 DSTAMODE Destination addressing mode. DSTAMODE determines the
addressing mode used by the DMA controller when it writes to the
destination port of the channel:

00b Constant address

The same address is used for each element transfer.

01b Automatic post increment

After each element transfer, the address is incremented according
to the selected data type:

If data type is 8-bit
 Address = Address + 1

If data type is 16-bit
 Address = Address + 2

If data type is 32-bit
 Address = Address + 4

10b Single index

After each element transfer, the address is incremented by the
programmed element index amount:

 Address = Address + element index

11b Double index (sort)

After each element transfer, the address is incremented by the
appropriate index amount:

If there are more elements to transfer in the current frame
 Address = Address + element index

If the last element in the frame has been transferred
 Address = Address + frame index

DMA Controller Registers

DMA Controller44 SPRU613G

Table 13. DMACCR Bit Field Descriptions (Continued)

Bit DescriptionValueField

13-12 SRCAMODE Source addressing mode. SRCAMODE determines the
addressing mode used by the DMA controller when it reads from
the source port of the channel:

00b Constant address

The same address is used for each element transfer.

01b Automatic post increment

After each element transfer, the address is incremented according
to the selected data type:

If data type is 8-bit
 Address = Address + 1

If data type is 16-bit
 Address = Address + 2

If data type is 32-bit
 Address = Address + 4

10b Single index

After each element transfer, the address is incremented by the
programmed element index amount:

 Address = Address + element index

11b Double index (sort)

After each element transfer, the address is incremented by the
appropriate index amount:

If there are more elements to transfer in the current frame
 Address = Address + element index

If the last element in the frame has been transferred
 Address = Address + frame index

DMA Controller Registers

45DMA ControllerSPRU613G

Table 13. DMACCR Bit Field Descriptions (Continued)

Bit DescriptionValueField

11 ENDPROG End-of-programming bit. Each DMA channel has two sets of
registers: configuration registers and working registers. When
block transfers occur repeatedly because of auto-initialization
(AUTOINIT = 1), you can change the context for the next DMA
transfer by writing to the configuration registers during the current
block transfer. At the end of the current transfer, the contents of the
configuration registers are copied into the working registers, and
the DMA controller begins the next transfer using the new context.
For proper auto-initialization, the CPU must finish programming
the configuration registers before the DMA controller copies their
contents.

The DMA controller automatically clears the ENDPROG bit after
copying the configuration registers to the working registers. The
CPU can then program the DMA channel context for the next
iteration of the transfer by programming the configuration
registers.

To make sure auto-initialization waits for the CPU, follow this
procedure:

1) Make auto-initialization wait for ENDPROG = 1 by clearing
the REPEAT bit (REPEAT = 0)

2) Poll for ENDPROG = 0, which indicates that the DMA
controller has finished copying the previous context. The
configuration registers can now be programmed for the next
iteration.

3) Program the configuration registers.

4) Set ENDPROG (ENDPROG = 1) to indicate the end of
register programming.

0 Configuration registers ready for programming / Programming in
progress

1 End of programming

10 WP Write posting bit. This bit enables or disables the write posting
capability described on page 29.

0 Write posting disabled.

1 Write posting enabled.

After initiating a write, the DMA controller can receive
acknowledgement from the internal memory interface before the
data is actually written to memory.

DMA Controller Registers

DMA Controller46 SPRU613G

Table 13. DMACCR Bit Field Descriptions (Continued)

Bit DescriptionValueField

9 REPEAT Repeat condition bit. If auto-initialization is selected for a channel
(AUTOINIT = 1), REPEAT specifies one of two special repeat
conditions:

0 Repeat only if ENDPROG = 1

Once the current DMA transfer is complete, auto-initialization only
occurs if the end-of-programmation bit (ENDPROG) is set.

1 Repeat regardless of ENDPROG

Once the current DMA transfer is complete, auto-initialization
occurs regardless of whether ENDPROG is 0 or 1.

8 AUTOINIT Auto-initialization bit. The DMA controller supports
auto-initialization, which is the automatic reinitialization of the
channel between DMA block transfers. Use AUTOINIT to enable
or disable this feature:

0 Auto-initialization is disabled

Activity in the channel stops at the end of the current block transfer.
To stop a transfer immediately, clear the channel enable bit (EN).

1 Auto-initialization is enabled

Once the current block transfer is complete, the DMA controller
reinitializes the channel and starts a new block transfer. To stop
activity in the channel you have two options:

� To stop activity immediately, clear the channel enable bit
(EN = 0).

� To stop activity after the current block transfer, clear
AUTOINIT (AUTOINIT= 0)

7 EN Channel enable bit. Use EN to enable or disable transfers in the
channel. The DMA controller clears EN once a block transfer in the
channel is complete.

Note: If the CPU attempts to write to EN at the same time that the
DMA controller must clear EN, the DMA controller is given higher
priority. EN is cleared, and the value from the CPU is discarded.

0 Channel is disabled

The channel cannot be serviced by the DMA controller. If a DMA
transfer is already active in the channel, the DMA controller stops
the transfer and resets the channel.

1 Channel is enabled

The channel can be serviced by the DMA controller at the next
available time slot.

DMA Controller Registers

47DMA ControllerSPRU613G

Table 13. DMACCR Bit Field Descriptions (Continued)

Bit DescriptionValueField

6 PRIO Channel priority bit. All six of the DMA channels are given a fixed
position and programmable priority level on the service chain of the
DMA controller. PRIO determines whether the associated channel
has a high priority or a low priority. High-priority channels are
serviced before low-priority channels.

0 Low priority

1 High priority

5 FS Frame/element synchronization bit. You can use the SYNC bits of
DMACCR to specify a synchronization event for the channel. The
FS bit determines whether the synchronization event initiates the
transfer of an element or an entire frame of data:

0 Element synchronization

When the selected synchronization event occurs, one element is
transferred in the channel. Each element transfer waits for the
synchronization event.

1 Frame synchronization

When the selected synchronization event occurs, an entire frame
is transferred in the channel. Each frame transfer waits for the
synchronization event.

4-0 SYNC See Table 14 Synchronization control bits. SYNC in DMACCR determines
which event in the DSP (for example, a timer countdown) initiates
a DMA transfer in the channel. Multiple channels can have the
same SYNC value; in other words, one synchronization event can
initiate activity in multiple channels.

A DSP reset selects SYNC = 00000b (no synchronization event).
When SYNC = 00000b, the DMA controller does not wait for a
synchronization event before beginning a DMA transfer in the
channel; channel activity begins as soon as the channel is enabled
(EN = 1).

If the CPU attempts to write a reserved value to the SYNC bits, the
DMA controller will send a bus error interrupt (BERRINT) request
to the CPU.

DMA Controller Registers

DMA Controller48 SPRU613G

Table 14. Synchronization Event Mapping for the TMS320VC5501/5502 DSPs

SYNC Field
of DMACCR Synchronization Event For The Channel

00000b No synchronization event

00001b McBSP 0 receive event

00010b McBSP 0 transmit event

00011b Reserved (do not use this value)

00100b Reserved (do not use this value)

00101b McBSP 1 receive event

00110b McBSP 1 transmit event

00111b Reserved (do not use this value)

01000b Reserved (do not use this value)

01001b Reserved/McBSP event
Serial Port Mode† = 0: Reserved
Serial Port Mode = 1: McBSP 2 receive event

Not available on the TMS320VC5501

01010b Reserved/McBSP event
Serial Port Mode† = 0: Reserved
Serial Port Mode = 1: McBSP 2 transmit event

Not available on the TMS320VC5501

01011b Reserved/UART event
Serial Port Mode† = 0: UART receive event
Serial Port Mode = 1: Reserved

01100b Reserved/UART event
Serial Port Mode† = 0: UART transmit event
Serial Port Mode = 1: Reserved

01101b Timer 0 interrupt event

01110b Timer 1 interrupt event

01111b External interrupt 0

10000b External interrupt 1

10001b External interrupt 2

† For details on the Serial Port Mode bit, see the device-specific data manual.

DMA Controller Registers

49DMA ControllerSPRU613G

Table 14. Synchronization Event Mapping for the TMS320VC5501/5502 DSPs
(Continued)

SYNC Field
of DMACCR Synchronization Event For The Channel

10010b External interrupt 3

10011b I2C module receive event

10100b I2C module transmit event

Other values Reserved (do not use these values)

† For details on the Serial Port Mode bit, see the device-specific data manual.

15.4 Interrupt Control Register (DMACICR) and Status Register (DMACSR)

Each channel has an interrupt control register (DMACICR) and a status
register (DMACSR). DMACICR and DMACSR are I/O-mapped registers.
Their bits are shown in Figure 15 and described in Table 15 and Table 16.

Use DMACICR to specify that one or more operational events in the DMA
controller will trigger an interrupt. If an operational event occurs and its
interrupt enable (IE) bit is 1, an interrupt request is sent to the DSP CPU, where
it can be serviced or ignored. Each channel has its own interrupt line to the
CPU and one set of flag and enable bits in the CPU.

To see which operational event or events have occurred, your program can
read DMACSR. The DMA controller sets one of the interrupt flag bits (bits 7
and 5-0) when the operational event occurs. The interrupt flag bits stay set until
your program reads DMACSR, at which point all of its bits are cleared
automatically.

The AERR, DROP, and TIMEOUT bits indicate error conditions. Once an error
condition occurs, it must be cleared before the next DMA transfer is initiated.
To clear the error condition, the CPU must write 0 to the EN bit of DMACCR.

The SYNC bit (bit 6) can be used to detect when a synchronization event has
occurred (SYNC = 1) and when the resulting access request has been
serviced (SYNC = 0).

DMA Controller Registers

DMA Controller50 SPRU613G

Figure 15. Interrupt Control Register (DMACICR) and Status Register (DMACSR)

DMACICR

15 9 8

Reserved Reserved†

R-0 R/W-1

7 6 5 4 3 2 1 0

AERRIE Reserved BLOCKIE LASTIE FRAMEIE HALFIE DROPIE TIMEOUTIE

R/W-1 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1

DMACSR

15 9 8

Reserved Reserved‡

R-0 R-x

7 6 5 4 3 2 1 0

AERR SYNC BLOCK LAST FRAME HALF DROP TIMEOUT

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Legend: R = Read; W = Write; -n = Value after reset; -x = Value after reset is not defined

† Always write 0 to bit 8 of DMACICR. After reset, change this bit from 1 to 0.
‡ The read state of bit 8 of DMACSR is not defined.

Table 15. DMACICR Bit Field Descriptions

Bit Field Value Description

15-9 Reserved Writing to these bits has no effect. Reading these bits returns
0s.

8 Reserved Always write 0 to this bit. After a reset, change this bit from 1 to
0.

7 AERRIE Address error interrupt enable bit. AERRIE determines how the
DMA controller responds to an address error at the source port
or the destination port of the channel. The address error
condition is described in section 12.3 on page 34.

0 Do not send the channel interrupt request to the CPU when this
error occurs.

1 Send the channel interrupt request to the CPU when this error
occurs.

DMA Controller Registers

51DMA ControllerSPRU613G

Table 15. DMACICR Bit Field Descriptions (Continued)

Bit DescriptionValueField

6 Reserved Writing to this bit has no effect. Reading this bit returns 0.

5 BLOCKIE Whole block interrupt enable bit. BLOCKIE determines how the
DMA controller responds when all of the current block has been
transferred to the destination port.

0 Do not send the channel interrupt request to the CPU when this
error occurs.

1 Send the channel interrupt request to the CPU when this error
occurs.

4 LASTIE Last frame interrupt enable bit. LASTIE determines how the
DMA controller responds to a last-frame event: If the peripheral
port is the source, the last-frame event occurs when the first
element of the last frame is being read from the source. If an
external or internal memory port is the source, the last-frame
event occurs when the first element of the last frame is being
received at the destination.

0 Do not send the channel interrupt request to the CPU when this
error occurs.

1 Send the channel interrupt request to the CPU when this error
occurs.

3 FRAMEIE Whole frame interrupt enable bit. FRAMEIE determines how
the DMA controller responds when the all of the current frame
has been transferred to the destination port.

0 Do not send the channel interrupt request to the CPU when this
error occurs.

1 Send the channel interrupt request to the CPU when this error
occurs.

DMA Controller Registers

DMA Controller52 SPRU613G

Table 15. DMACICR Bit Field Descriptions (Continued)

Bit DescriptionValueField

2 HALFIE Half frame interrupt enable bit. HALFIE determines how the
DMA controller responds when the first half of the current frame
has been transferred to the destination port. For a frame with an
odd number of elements, the half-frame event occurs as soon
as the number of elements transferred is greater than the
number that remain to be transferred. For example, for a frame
of five elements, the half-frame event occurs when the DMA
controller has transferred three of the elements.

0 Do not send the channel interrupt request to the CPU when this
error occurs.

1 Send the channel interrupt request to the CPU when this error
occurs.

1 DROPIE Synchronization event drop interrupt enable bit. If a DMA
synchronization event occurs again before the DMA controller
has finished servicing the previous DMA request, an error has
occurred—a synchronization event drop. DROPIE determines
how the DMA controller responds when a synchronization
event drop occurs in the channel.

0 Do not send the channel interrupt request to the CPU when this
error occurs.

1 Send the channel interrupt request to the CPU when this error
occurs.

0 TIMEOUTIE Time-out interrupt enable bit. TIMEOUTIE determines how the
DMA controller responds to a time-out error at the source port
or the destination port of the channel. The time-out error
condition is described in section 12.2 on page 34.

0 Do not send the channel interrupt request to the CPU when this
error occurs.

1 Send the channel interrupt request to the CPU when this error
occurs.

DMA Controller Registers

53DMA ControllerSPRU613G

Table 16. DMACSR Bit Field Descriptions

Bit Field Value Description

15-9 Reserved Writing to these bits has no effect. Reading these bits returns
0s.

8 Reserved The read state of bit 8 is not defined.

7 AERR Address error status bit. The DMA controller sets AERR when
an address error has occurred at the source port or the
destination port of the channel. The address error condition is
described in section 12.3 on page 34.

0 An address error has not occurred, or AERR has been cleared.

1 An address error has occurred. A channel interrupt request has
been sent to the CPU.

6 SYNC Synchronization event status bit. The DMA controller updates
SYNC to indicate when the synchronization event for the
channel has occurred and when the synchronized channel has
been serviced.

0 The DMA controller has finished servicing the previous access
request.

1 The synchronization event has occurred. The SYNC bit is
automatically cleared by the DMA as described in section 11.1
on page 31.

Note 1: If a synchronization event occurs again before the DMA
controller has finished servicing the previous DMA request, an
error has occurred- a synchronization event drop. You can track
this type of error using the DROPIE bit and the DROP bit.

Note 2: To select a synchronization event for a channel, use the
SYNC bits of DMACCR. The SYNC bit is set to 0 if the SYNC
bits in the DMACCR are set to 00000b.

5 BLOCK Whole block status bit. The DMA controller sets BLOCK when
all of the current block has been transferred to the destination
port.

0 The whole-block event has not occurred yet, or BLOCK has
been cleared.

1 The whole block has been transferred. A channel interrupt
request has been sent to the CPU.

DMA Controller Registers

DMA Controller54 SPRU613G

Table 16. DMACSR Bit Field Descriptions (Continued)

Bit DescriptionValueField

4 LAST Last frame status bit. The DMA controller sets LAST when a
last-frame event occurs. If the peripheral port is the source, the
last-frame event occurs when the first element of the last frame
is being read from the source. If an external or internal memory
port is the source, the last-frame event occurs when the first
element of the last frame is being received at the destination.

0 The last-frame event has not occurred yet, or LAST has been
cleared.

1 The DMA controller has started transferring the last frame. A
channel interrupt request has been sent to the CPU.

3 FRAME Whole frame status bit. The DMA controller sets FRAME when
all of the current frame has been transferred to the destination
port.

0 The whole-frame event has not occurred yet, or FRAME has
been cleared.

1 The whole frame has been transferred. A channel interrupt
request has been sent to the CPU.

2 HALF Half frame status bit. The DMA controller sets HALF when the
first half of the current frame has been transferred to the
destination port. For a frame with an odd number of elements,
the half-frame event occurs as soon as the number of elements
transferred is greater than the number that remain to be
transferred. For example, for a frame of five elements, the
half-frame event occurs when the DMA controller has
transferred three of the elements.

0 The half-frame event has not occurred yet, or HALF has been
cleared.

1 The first half of the frame has been transferred. A channel
interrupt request has been sent to the CPU.

DMA Controller Registers

55DMA ControllerSPRU613G

Table 16. DMACSR Bit Field Descriptions (Continued)

Bit DescriptionValueField

1 DROP Synchronization event drop status bit. If a DMA synchronization
event occurs again before the DMA controller has finished
servicing the previous DMA request, an error has occurred− a
synchronization event drop. The DMA controller sets DROP
only if DROPIE = 1 in DMACICR and a synchronization event
drop has occurred in the channel.

0 A synchronization event drop has not occurred, or DROP has
been cleared.

1 A synchronization event drop has occurred. A channel interrupt
request has been sent to the CPU.

Note 1: The DROP bit is cleared after the DMACSR is read.

Note 2: The DROP bit is set to 0 if the SYNC bits in the
DMACCR are set to 00000b.

0 TIMEOUT Time-out status bit. The DMA controller sets TIMEOUT only if
TIMEOUTIE = 1 in DMACICR and a time-out error has
occurred at the source port or the destination port of the
channel. The time-out error condition is described in section
12.2 on page 34.

0 A time-out error has not occurred, or TIMEOUT has been
cleared.

1 A time-out error has occurred. A channel interrupt request has
been sent to the CPU.

15.5 Source and Destination Parameters Register (DMACSDP)

Each channel has a source and destination parameters register of the form
shown in Figure 16. This I/O-mapped register enables you to choose a source
port (SRC) and a destination port (DST), specify a data type (DATATYPE) for
port accesses, enable or disable data packing (SRCPACK and DSTPACK),
and enable or disable burst transfers (SRCBEN and DSTBEN).

DMA Controller Registers

DMA Controller56 SPRU613G

Figure 16. Source and Destination Parameters Register (DMACSDP)

15 14 13 12 9

DSTBEN DSTPACK DST

R/W-00 R/W-0 R/W-0000

8 7 6 5 2 1 0

SRCBEN SRCPACK SRC DATATYPE

R/W-00 R/W-0 R/W-0000 R/W-00

Legend: R = Read; W = Write; -n = Value after reset

Table 17. DMACSDP Bit Field Descriptions

Bit Field Value Description

15-14 DSTBEN Destination burst enable bit. A burst in the DMA controller is four
consecutive 32-bit accesses at a DMA port. DSTBEN determines whether
the DMA controller performs a burst at the destination port of the channel.

00b Bursting disabled (single access enabled) at the destination

01b Bursting disabled (single access enabled) at the destination

10b Bursting enabled at the destination. When writing to the destination, the
DMA controller performs four consecutive 32-bit accesses.

11b Reserved. If the CPU attempts to write 11b to the DSTBEN bits, the DMA
controller will send a bus error interrupt (BERRINT) request to the CPU.

13 DSTPACK Destination packing enable bit. The DMA controller can perform data
packing to double or quadruple the amount of data passed to the destination
in a single transfer. For example, if an 8-bit data type is selected and the
destination port has a 32-bit data bus, four 8-bit pieces of data can be
packed into 32 bits before being sent to the destination. DSTPACK
determines whether data packing is used at the destination port.

0 Packing disabled at the destination

1 Packing enabled at the destination. Where possible, the DMA controller
packs data before each write to the destination. Section 9 (page 27) shows
the instances where data packing is performed.

DMA Controller Registers

57DMA ControllerSPRU613G

Table 17. DMACSDP Bit Field Descriptions (Continued)

Bit DescriptionValueField

12-9 DST Destination selection bit. DST selects which DMA port is the destination for
data transfers in the channel:

0000b DARAM via internal memory port 0

0001b DARAM via internal memory port 1

0010b External memory via the external memory interface (EMIF)

0011b Peripherals via the peripheral bus controller

Other Reserved. If the CPU attempts to write a reserved value to the DST bits, the
DMA controller will send a bus error interrupt (BERRINT) request to the
CPU.

8-7 SRCBEN Source burst enable bit. A burst in the DMA controller is four consecutive
32-bit accesses at a DMA port. SRCBEN determines whether the DMA
controller performs a burst at the source port of the channel.

This field will be ignored if:

� the source port does not support burst capability, or

� constant address mode is selected for the source port, or

� the channel is element synchronized.

00b Bursting disabled (single access enabled) at the source

01b Bursting disabled (single access enabled) at the source

10b Bursting enabled at the source. When reading from the source, the DMA
controller performs four consecutive 32-bit accesses.

11b Reserved. If the CPU attempts to write 11b to the SRCBEN bits, the DMA
controller will send a bus error interrupt (BERRINT) request to the CPU.

6 SRCPACK Source packing enable bit. The DMA controller can perform data packing
to double or quadruple the amount of data gathered at the source before a
transfer. For example, if an 8-bit data type is selected and the source port
has a 32-bit data bus, four 8-bit pieces of data can be packed into 32 bits
before being sent through the channel. SRCPACK determines whether data
packing is used at the source port.

0 Packing disabled at the source

1 Packing enabled at the source. Where possible, the DMA controller packs
data from the source before beginning a data transfer in the channel.
Section 9 (page 27) shows the instances where data packing is performed.

DMA Controller Registers

DMA Controller58 SPRU613G

Table 17. DMACSDP Bit Field Descriptions (Continued)

Bit DescriptionValueField

5-2 SRC Source selection bit. SRC selects which DMA port is the source for data
transfers in the channel:

0000b DARAM via internal memory port 0

0001b DARAM via internal memory port 1

0010b External memory via the external memory interface (EMIF)

0011b Peripherals via the peripheral bus controller

Other Reserved. If the CPU attempts to write a reserved value to the SRC bits, the
DMA controller will send a bus error interrupt (BERRINT) request to the
CPU.

DMA Controller Registers

59DMA ControllerSPRU613G

Table 17. DMACSDP Bit Field Descriptions (Continued)

Bit DescriptionValueField

1-0 DATATYPE Data type bit. DATATYPE indicates how data is to be accessed at the source
and at the destination of the channel. Note that the DMA controller uses byte
addresses for its accesses; each byte in data space or I/O space has its
own address. For information on how addresses are updated between
element transfers, see the descriptions for the SRCAMODE bits and the
DSTAMODE bits in DMACCR (page 42).

00b 8-bit

The DMA controller makes 8-bit accesses at the source and at the destina-
tion of the channel. The source and destination start addresses have no
alignment constraint:

 Start address: XXXX XXXX XXXX XXXXb (X can be 0 or 1)

If you choose the automatic post increment addressing mode at the source
or the destination, the corresponding address is updated by an increment
of 1 after each element transfer.

01b 16-bit

The DMA controller makes 16-bit accesses at the source and at the destina-
tion. The source and destination start addresses must each be on an even
2-byte boundary; the least significant bit (LSB) must be 0:

 Start address: XXXX XXXX XXXX XXX0b (X can be 0 or 1)

If you choose the automatic post increment addressing mode at the source
or the destination, the address is updated by an increment of 2 after each
element transfer.

10b 32-bit

The DMA controller makes 32-bit accesses at the source and at the destina-
tion. The source and destination start addresses must be on an even 4-byte
boundary; the 2 LSBs must be 0:

 Start address: XXXX XXXX XXXX XX00b (X can be 0 or 1)

If you choose the automatic post increment addressing mode at the source
or the destination, the address is updated by an increment of 4 after each
element transfer.

11b Reserved. If the CPU attempts to write 11b to the DATATYPE bits, the DMA
controller will send a bus error interrupt (BERRINT) request to the CPU.

DMA Controller Registers

DMA Controller60 SPRU613G

15.6 Source Start Address Registers (DMACSSAL and DMACSSAU)

Each channel has two source start address registers, which are shown in
Figure 17 and described in Table 18 and Table 19. For the first access to the
source port of the channel, the DMA controller generates a byte address by
concatenating the contents of the two I/O-mapped registers. DMACSSAU
supplies the upper bits, and DMACSSAL supplies the lower bits:

Source start address = DMACSSAU:DMACSSAL

Notes:

1) You must load the source start address registers with a byte address. If
you have a word address, shift it left by 1 before loading the registers.

2) If you have a 16-bit or 32-bit data type, the start address must be aligned
properly. See the description for the DATATYPE bits of DMACSDP
(page 55). If the CPU attempts to write an unaligned address, the DMA
controller will send a bus error interrupt (BERRINT) request to the CPU.

3) It is the programmer’s responsibility to ensure that the start address, ele-
ment index and frame index will produce valid addresses within the
range of the port. If an invalid address is generated, a time-out error will
occur.

The destination start address is supplied by DMACDSAL and DMACDSAU,
which are described in section 15.7.

Figure 17. Source Start Address Registers (DMACSSAL and DMACSSAU)

DMACSSAL

15 0

SSAL

R/W-0

DMACSSAU

15 0

SSAU

R/W-0

Legend: R = Read; W = Write; -n = Value after reset

DMA Controller Registers

61DMA ControllerSPRU613G

Table 18. DMACSSAL Bit Field Description

Bit Field Value Description

15-0 SSAL 0000h-FFFFh Lower part of source start address (byte address)

Table 19. DMACSSAU Bit Field Description

Bit Field Value Description

15-0 SSAU 0000h-00FFh Upper part of source start address (byte address)

0100h-FFFFh Reserved (do not use these values)

15.7 Destination Start Address Registers (DMACDSAL and DMACDSAU)

Each channel has two destination start address registers, which are shown in
Figure 18 and described in Table 20 and Table 21. For the first access to the
destination port of the channel, the DMA controller generates a byte address
by concatenating the contents of the two I/O-mapped registers. DMACDSAU
supplies the upper bits, and DMACDSAL supplies the lower bits:

Destination start address = DMACDSAU:DMACDSAL

Notes:

1) You must load the destination start address registers with a byte ad-
dress. If you have a word address, shift it left by 1 before loading the reg-
isters.

2) If you have a 16-bit or 32-bit data type, the start address must be aligned
properly. See the description for the DATATYPE bits of DMACSDP
(page 55). If the CPU attempts to write an unaligned address, the DMA
controller will send a bus error interrupt (BERRINT) request to the CPU.

3) It is the programmer’s responsibility to ensure that the start address, ele-
ment index and frame index will produce valid addresses within the
range of the port. If an invalid address is generated, a time-out error will
occur.

The source start address is supplied by DMACSSAL and DMACSSAU, which
are described in section 15.6.

DMA Controller Registers

DMA Controller62 SPRU613G

Figure 18. Destination Start Address Registers (DMACDSAL and DMACDSAU)

DMACDSAL

15 0

DSAL

R/W-0

DMACDSAU

15 0

DSAU

R/W-0

Legend: R = Read; W = Write; -n = Value after reset

Table 20. DMACDSAL Bit Field Description

Bit Field Value Description

15-0 DSAL 0000h-FFFFh Lower part of destination start address (byte address)

Table 21. DMACDSAU Bit Field Description

Bit Field Value Description

15-0 DSAU 0000h-00FFh Upper part of destination start address (byte address)

0100h-FFFFh Reserved (do not use these values)

15.8 Element Number Register (DMACEN) and Frame Number Register (DMACFN)

Each channel has an element number register and a frame number register,
(see Figure 19, Table 22, and Table 23). Load DMACFN with the number of
frames you want in each block. Load DMACEN with the number of elements
you want in each frame. You must have at least one frame and one element,
and you can have as many as 65535 of each:

1 ≤ frame number ≤ 65535
1 ≤ element number ≤ 65535

DMA Controller Registers

63DMA ControllerSPRU613G

If the CPU attempts to write 0 to DMACEN or DMACFN, the DMA controller
will send a bus error interrupt (BERRINT) request to the CPU.

Figure 19. Element Number Register (DMACEN) and
Frame Number Register (DMACFN)

DMACEN

15 0

ELEMENTNUM

R/W-0001h

DMACFN

15 0

FRAMENUM

R/W-0001h

Legend: R = Read; W = Write; -n = Value after reset

Table 22. DMACEN Bit Field Description

Bit Field Value Description

15-0 ELEMENTNUM 0000h Reserved. If the CPU attempts to write 0000h to this field,
the DMA controller will send a bus error interrupt (BERRINT)
request to the CPU.

0001h-FFFFh Number of elements per frame (1-65535)

Table 23. DMACFN Bit Field Description

Bit Field Value Description

15-0 FRAMENUM 0000h Reserved. If the CPU attempts to write 0000h to this field,
the DMA controller will send a bus error interrupt (BERRINT)
request to the CPU.

0001h-FFFFh Number of frames per block (1-65535)

DMA Controller Registers

DMA Controller64 SPRU613G

15.9 Element Index Registers (DMACSEI, DMACDEI) and
Frame Index Registers (DMACSFI, DMACDFI)

The single- or double-index addressing mode can be selected separately for
the source and destination ports by using the SRCAMODE bits and the
DSTAMODE bits, respectively, in DMACCR (page 42). To support these index
addressing modes, each channel has two element index registers and two
frame index registers. These four registers are are shown in Figure 20 and
described in the tables that follow the figure.

The DMA controller uses the following index registers to control the source
port:

� DMACSEI: Contains the desired element index for the source for single-
or double-index addressing mode.

� DMACSFI: Contains the desired frame index for the source for the
double-index addressing mode.

The DMA controller uses the following index registers to control the destination
port:

� DMACDEI: Contains the desired element index for the destination for the
single- or double-index addressing mode.

� DMACDFI: Contains the desired frame index for the destination for the
double-index addressing mode.

The element and frame indexes are 16-bit signed numbers, providing the
following range:

-32768 bytes = frame index = 32767 bytes
-32768 bytes = element index = 32767 bytes

After each transfer, the source and destination address registers contain the
address for the last byte of the element that was transferred. For example,
consider the case in which the DMA channel is reading a 32-bit element at byte
address 0x2000. The source address will be 0x2003 after the element is read
because the DMA channel will read a total of four bytes. If the DMA channel
reads a 16-bit element, the source address would be 0x2001 after the element
read because only two bytes are read. For a byte read, the source address
would stay at 0x2000 after the byte read.

When the single index mode is used, the element index is added to the source
or destination address at the end of each element transfer. The modified
address will then be used at the beginning of the next element transfer.

DMA Controller Registers

65DMA ControllerSPRU613G

When the double index mode is used for the source or the destination address,
the element index is added to the source or destination address at the end of
each element transferred as described above, except for the last element in
the frame. For the last element in the frame, the frame index is added to the
source or destination address instead of the element index. For example, if the
last element in the frame starts at byte address 0x801E where the data type
is 16-bit and the frame index is set to 0x0003, the DMA will move the first byte
(0x801E) then the second byte (0x801F) of the element. The frame index will
then be added to the 0x801F to create the address for the first byte next
element to be moved (0x801F + 0x0003 = 0x8022).

The element index that is added to the source or destination address must
produce an aligned address according to the data type selected in the
DATATYPE field of DMACSDP. For this reason only certain values are valid
for the element index.

Valid values for the element index are:

� [4 x N] + 1 (where N = -2, -1, 0, 1, 2...) if the data type is 32-bit

� [2 x N] + 1 (where N = -2, -1, 0, 1, 2...) if the data type is 16-bit

� Any value if the data type is 8-bit

As with the element index, the frame index must produce an aligned address
according to the data type selected in the DATATYPE field of DMACSDP.

Valid values for the frame index are:

� [4 x N] + 1 (where N = -2, -1, 0, 1, 2...) if the data type is 32-bit

� [2 x N] + 1 (where N = -2, -1, 0, 1, 2...) if the data type is 16-bit

� Any value if the data type is 8-bit

It is the programmer’s responsibility to ensure that the start address, element
index, and frame index will produce valid addresses within the range of the
port. If an invalid address is generated, a time-out error will occur.

If the CPU attempts to write an element or a frame index that would cause an
unaligned address, the DMA controller will send a bus error interrupt
(BERRINT) request to the CPU. This occurs even if address indexing is not
used.

DMA Controller Registers

DMA Controller66 SPRU613G

Figure 20. Element Index Registers (DMACSEI, DMACDEI) and
Frame Index Registers (DMACSFI, DMACDFI)

DMACSEI

15 0

ELEMENTNDX

R/W-0

DMACSFI

15 0

FRAMENDX

R/W-0

DMACDEI

15 0

ELEMENTNDX

R/W-0

DMACDFI

15 0

FRAMENDX

R/W-0

Legend: R = Read; W = Write; -n = Value after reset

Table 24. DMACSEI Bit Field Description

Bit Field Value Description

15-0 ELEMENTNDX -32768 to 32767 Source element index (in bytes)

Table 25. DMACSFI Bit Field Description

Bit Field Value Description

15-0 FRAMENDX -32768 to 32767 Source frame index (in bytes)

DMA Controller Registers

67DMA ControllerSPRU613G

Table 26. DMACDEI Bit Field Description

Bit Field Value Description

15-0 ELEMENTNDX -32768 to 32767 Destination element index (in bytes)

Table 27. DMACDFI Bit Field Description

Bit Field Value Description

15-0 FRAMENDX -32768 to 32767 Destination frame index (in bytes)

15.10 Source Address Counter (DMACSAC) and
Destination Address Counter (DMACDAC)

The progress of each DMA channel can be monitored by reading the source
and destination address counters (DMACSAC and DMACDAC). DMACSAC
shows the low 16 bits of the current source address. DMACDAC shows the low
16 bits of the current destination address.

Figure 21. Channel Source Address Counter (DMACSAC) and
Channel Destination Address Counter (DMACDAC)

DMACSAC

15 0

SAC

R/W-0

DMACDAC

15 0

DAC

R/W-0

Legend: R = Read; W = Write; -n = Value after reset

Table 28. DMACSAC Bit Field Description

Bit Field Value Description

15-0 SAC 0000h-FFFFh Current channel source address

Table 29. DMACDAC Bit Field Description

Bit Field Value Description

15-0 DAC 0000h-FFFFh Current channel destination address

DMA Controller68 SPRU613G

This page is intentionally left blank.

69DMA ControllerSPRU613G

Revision History

Table 30. Document Revision History

Page Additions/Modifications/Deletions

14 Added Section 3.

DMA Controller70 SPRU613G

Index

71

Index

A
address counters (DMACSAC, DMACDAC) 67
address error condition 34
address error interrupt enable bit (AERRIE) 50
address error status bit (AERR) 50
address updating in a DMA channel 25
AERR bit of DMACSR 50
AERRIE bit of DMACICR 50
auto-initialization with changing context 18
auto-initialization with unchanging context 17
AUTOINIT bit (auto−initialization bit) of

DMACCR described in table 16
AUTOINIT bit (autoinitialization bit) of DMACCR 42

B
BLOCK bit of DMACSR 50
block diagram of DMA controller connections 11
block interrupt enable bit (BLOCKIE) 50
block of data 22
block status bit (BLOCK) 50
BLOCKIE bit of DMACICR 50
buffering writes to internal memory 29
burst capability 26
bus error interrupt 35

C
channel 12
channel address updating 25
channel auto-initialization capability 14
channel context 13
channel control register (DMACCR) 42
channel enable bit (EN) 42

channel interrupt 33
channel monitoring 32
channel priority bit (PRIO) 42
channel start addresses 23
channel synchronized to event 30
channels and port accesses 12
checking synchronization status 31
CONFIG register used to set DMA priority 11
configuration versus working registers (figure) 13
CPU requests versus DMA request for internal

memory 11

D
data burst capability 26
DATATYPE bits of DMACSDP 56
destination address counter (DMACDAC) 67
destination addressing mode bits

(DSTAMODE) 42
destination burst enable bits (DSTBEN) 56
destination packing enable bit (DSTPACK) 56
destination selection bits (DST) 56
destination start address registers (DMACDSAL,

DMACDSAU) 61
DMA channel 12
DMA channel address updating 25
DMA channel enable bit (EN) 42
DMA channel interrupt 33
DMA channel monitoring 32
DMA channel priority bit (PRIO) 42
DMA channel start addresses 23
DMA channel synchronized to event 30
DMA controller connections (figure) 11
DMA requests versus CPU requests for internal

memory 11
DMA service chain 19

Index

72

DMA service chain example 20

DMA transfer latency 36

DMA transfer’s two parts (figure) 12

DMACCR 42

DMACDAC 67

DMACDEI 64

DMACDFI 64

DMACDSAL and DMACDSAU 61

DMACEN 62

DMACFN 62

DMACICR 49

DMACSAC 67

DMACSDP 55

DMACSEI 64

DMACSFI 64

DMACSR 49

DMACSSAL and DMACSSAU 60

DMAGCR 39

DMAGTCR 40

DROP bit of DMACSR 50

DROPIE bit of DMACICR 50

dropped synchronization event 31

DSP reset, effects on DMA controller 37

DST bits of DMACSDP 56

DSTAMODE bits of DMACCR 42

DSTBEN bits of DMACSDP 56

DSTPACK bit of DMACSDP 56

E
element index registers (DMACSEI, DMACDEI) 64

element number register (DMACEN) 62

element of data 22

element synchronization mode 30

emulation mode bit (FREE) 39

emulation modes 37

EN bit of DMACCR 42

end−of−programmation bit (ENDPROG) 42

end−of−programming bit (ENDPROG) described in
table 15, 45

ENDPROG bit of DMACCR 42
described in table 15, 45

errors
address error 34
bus error 35
time−out error 34

ETE bit of DMAGTCR 40

event drop interrupt enable bit (DROPIE) 50

event drop status bit (DROP) 50

external memory port time−out counter enable bit
(ETE) 40

F
features of the DMA controller 10

FRAME bit of DMACSR 50

frame index registers (DMACSFI, DMACDFI) 64

frame interrupt enable bit (FRAMEIE) 50

frame number register (DMACFN) 62

frame of data 22

frame status bit (FRAME) 50

frame synchronization mode 30

frame/element synchronization bit (FS) 42

FRAMEIE bit of DMACICR 50

FREE bit of DMAGCR 39

FS bit of DMACCR 42

G
global control register (DMAGCR) 39

global time−out control register (DMAGTCR) 40

H
HALF bit of DMACSR 50

half frame interrupt enable bit (HALFIE) 50

half frame status bit (HALF) 50

HALFIE bit of DMACICR 50

Index

73

I
idle configurations, effects on DMA controller 37

index registers (DMACSEI, DMACDEI, DMACSFI,
DMACDFI) 64

internal memory access priority (DMA requests and
CPU requests) 11

internal memory port 0 time−out counter enable bit
(ITE0) 40

internal memory port 1 time−out counter enable bit
(ITE1) 40

internal memory write posting 29

interrupt control register (DMACICR) 49

interrupts for monitoring channel activity 32

introduction to the DMA controller 10

ITE0 bit of DMAGTCR 40

ITE1 bit of DMAGTCR 40

K
key features of the DMA controller 10

L
LAST bit of DMACSR 50

last frame interrupt enable bit (LASTIE) 50

last frame status bit (LAST) 50

LASTIE bit of DMACICR 50

latency in DMA transfers 36

M
monitoring channel activity 32

N
number of elements set in DMACEN 62

number of frames set in DMACFN 62

P
peripheral port time−out counter enable bit

(PTE) 40

port read access 12

port write access 12

ports of DMA controller (figure) 11

position in DMA service chain 19

power reduction 37

PRIO bit of DMACCR 42

PRIODMA bit of CONFIG used to set DMA
priority 11

priority bit for DMA channel (PRIO) 42

priority in DMA service chain 19

PTE bit of DMAGTCR 40

R
reducing power consumed 37

registers of the DMA controller 38

REPEAT (repeat condition) bit of
DMACCR described in table 15

REPEAT bit of DMACCR 42

repeat condition bit (REPEAT) 42

reset, effects on DMA controller 37

S
service chain 19

service chain example 20

source address counter (DMACSAC) 67

source addressing mode bits (SRCAMODE) 42

source and destination parameters register
(DMACSDP) 55

source burst enable bits (SRCBEN) 56

source packing enable bit (SRCPACK) 56

source selection bits (SRC) 56

source start address registers (DMACSSAL,
DMACSSAU) 60

SRC bits of DMACSDP 56

SRCAMODE bits of DMACCR 42

SRCBEN bits of DMACSDP 56

SRCPACK bit of DMACSDP 56

Index

74

start address registers
for destination in a DMA channel 61
for source in a DMA channel 60

start addresses for a DMA channel 23
status register (DMACSR) 49
SYNC bit of DMACSR 50
SYNC bits of DMACCR 42
synchronization control bits (SYNC in

DMACCR) 42
synchronization event drop interrupt enable bit

(DROPIE) 50
synchronization event drop status bit (DROP) 50
synchronization event status bit (SYNC in

DMACSR) 50
synchronization modes (element and frame) 30
synchronization status checking 31
synchronizing channel activity to an event 30
system configuration register (CONFIG) used to set

DMA priority 11

T
time−out counter enable bits (PTE, ETE, ITE1,

ITE0) 40
time−out error condition 34
time−out interrupt enable bit (TIMEOUTIE) 50
time−out status bit (TIMEOUT) 50
TIMEOUT bit of DMACSR 50
TIMEOUTIE bit of DMACICR 50
transfer latency 36
two parts of DMA transfer (figure) 12

U
units of data 22

W
whole block interrupt enable bit (BLOCKIE) 50
whole block status bit (BLOCK) 50
whole frame interrupt enable bit (FRAMEIE) 50
whole frame status bit (FRAME) 50
working registers versus configuration registers

(figure) 13
WP bit of DMACCR 42
write posting bit (WP) 42
write posting for internal memory 29

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2005, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	Title Page - SPRU613G
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	DMA Controller
	1 Introduction to the DMA Controller
	1.1 Key Features of the DMA Controller
	1.2 Block Diagram of the DMA Controller
	1.3 DMA Requests Versus CPU Requests for Internal Memory

	2 Channels and Port Accesses
	3 Channel Auto-initialization Capability
	3.1 Auto-initialization with Unchanging Context
	3.2 Auto-initialization with Changing Context

	4 Service Chain
	4.1 Service Chain Example

	5 Units of Data: Byte, Element, Frame, and Block
	6 Start Addresses in a Channel
	6.1 Start Address in Memory
	6.2 Start Address in I/O Space

	7 Updating Addresses in a Channel
	8 Data Burst Capability
	9 Data Packing
	10 Write Posting: Buffering Writes to Internal Memory
	11 Synchronizing Channel Activity to an Event
	11.1 Checking the Synchronization Status
	11.2 Dropped Synchronization Event

	12 Monitoring Channel Activity
	12.1 Channel Interrupt
	12.2 Time-Out Error Condition
	12.3 Address Error Condition
	12.4 Bus Error Interrupt

	13 Latency in DMA Transfers
	14 Power, Emulation, and Reset Considerations
	14.1 Reducing Power Consumed by the DMA Controller (Idle Configurations)
	14.2 Emulation Modes of the DMA Controller
	14.3 DMA Controller after DSP Reset

	15 DMA Controller Registers
	15.1 Global Control Register (DMAGCR)
	15.2 Global Time-Out Control Register (DMAGTCR)
	15.3 Channel Control Register (DMACCR)
	15.4 Interrupt Control Register (DMACICR) and Status Register (DMACSR)
	15.5 Source and Destination Parameters Register (DMACSDP)
	15.6 Source Start Address Registers (DMACSSAL and DMACSSAU)
	15.7 Destination Start Address Registers (DMACDSAL and DMACDSAU)
	15.8 Element Number Register (DMACEN) and Frame Number Register (DMACFN)
	15.9 Element Index Registers (DMACSEI, DMACDEI) and Frame Index Registers (DMACSFI, DMACDFI)
	15.10 Source Address Counter (DMACSAC) and Destination Address Counter (DMACDAC)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	R
	S
	T
	U
	W

