
SIP: Why open is better

OpenFortress
digital signatures

*

the potential of sip

* IETF: A plethora of options and extensions

* Users: ‘I just want to make phone calls’

* Telcos: ‘Not all phones support feature X’

* Phone manufacturers: ‘Most telcos do not use feature X’

SIP has potential, but nobody is unleashing it!

| 0cpm firmerware | open OpenFortress*

open implementations are better

* Softphones are full of features (ZRTP, IPv6, . . .)

* Softphones aim to innovate (presence, chat, . . .)

* Joining forces makes economical sense

* Open source is great at handling SIP functionality

* But these are all softphones. . .

. . . present firmware remains as open as an oyster

| 0cpm firmerware | open OpenFortress*

prying open sip firmware

* OpenFortress is now building open source SIP firmware

* Thanks to NLnet for partial financial support

* Proof of concept: Grandstream BT200

* Framework designed for portability

* Deliberately GPL-licensed

| 0cpm firmerware | open OpenFortress*

architecture of 0cpm firmerware

TOP

Applications

BOTTOM

Drivers

ChipDriverLogic

PhoneWiring

* Linux is too big :’-(

* Some phones have only 256 kB RAM

* The bottom could run on top of Linux, if desired

| 0cpm firmerware | design OpenFortress*

top application can be varied

The ‘top’ part of the architecture can be one of many:

* SIP phone

* Doorbell

* Alarm clock

* Bootloader

* Mini test-targets to aid porting

| 0cpm firmerware | design OpenFortress*

ipv6 anywhere

We drop IPv4 and, along with it, NAT.
⇒ direct calls are always possible
⇒ ENUM and ITAD et al will work!

Establishing an IPv6 address anywhere?

* First try stateless autoconfiguration

* If so instructed, use DHCPv6

* In absense of IPv6, use DHCPv4

→ Setup a device-local tunnel for IPv6 access

| 0cpm firmerware | design OpenFortress*

network protocols

We use Logical Link Control for local traffic
⇒ flies under the ‘Internet radar’
⇒ hard target for remote assaults

PayloadLLCDEST SRC <1501

* type/len ≤ 1500 selects IEEE 802.2 instead of 802.3

* LLC1 is a trivial SOCK DGRAM service

* LLC2 is a trivial SOCK STREAM service

| 0cpm firmerware | design OpenFortress*

console over llc2

* Connect to the console over LLC2 instead of TCP

* Minimal requirements: memory, network, booting code

* Adds about 200 lines of C code

* Shows logs even before getting an IP address

* A generally useful tool for reverse engineering

| 0cpm firmerware | design OpenFortress*

bootloader over llc1

* Access flash memory or its partitions

* Use TFTP over LLC1 instead of over UDP

* Minimal requirements: memory, network, booting code

* Stand-alone image is about 10 kB (includes console)

* First program run after reset, exit when phone is on-hook

* A generally useful tool for reverse engineering

| 0cpm firmerware | design OpenFortress*

phone hardware

Most phones contain: SoC, RAM, Flash, Ethernet, GPIO.

| 0cpm firmerware | porting OpenFortress*

getting started

* Scrape off paint of concealed COTS chips

* Gather datasheets of all components

* Find an open source compiler chain

* Gut feeling: how would you have designed this beast?

* Multimeter: figure out connector capabilities

* Multimeter: trace component connectivity

* Be creative: find a way to launch your own code

| 0cpm firmerware | porting OpenFortress*

ways of launching your own code

* Look for pin headers — they often offer developer access

* Upgrade: new firmware images (little control here!)

* Serial port: often gives access to a boot loader

* JTAG: read/write Flash without host cooperation

* Vendor: booting over serial, I2C, ISP, . . .

| 0cpm firmerware | porting OpenFortress*

build the porting applications

You can build ‘top’ applications dedicated to driver testing:

* GPIO: hook switch, LED

* Timers, interrupts: flashing LED

* Keys, display: type and show

* Netconsole: Ethernet logging of some traffic

* Echo: Sound chip (‘codec’)

This lets you develop and test various ‘bottom’ drivers individually.

| 0cpm firmerware | porting OpenFortress*

use your imagination: boot floppy

* Booting from 8 I2C EEPROMs of 64 kB

* Gray code, so A0/A1/A2 without crossings

* Use i2c-parport as a Linux driver

| 0cpm firmerware | porting OpenFortress*

use your imagination: display driver

* Display drivers are often concealed

* BT200 mentioned: WR, RD, CS, DATA

* Based on these names, Holtek HT162x popped up

* Logic analyser + datasheet proved me right

* Logic analyser showed initiation rituals ;-)

* The x in HT162x was determined from LCD size, and no crystal

| 0cpm firmerware | porting OpenFortress*

use your imagination: display driver

Shown: D1=WR, D3=CS, D4=DATA

| 0cpm firmerware | porting OpenFortress*

use your imagination: analog effects

What do you think is going on this serial line to the codec?

| 0cpm firmerware | porting OpenFortress*

use your imagination: analog effects

The line floats after sending 16 bits, so others can grab a timeframe:

| 0cpm firmerware | porting OpenFortress*

in summary

* SIP is in desparate need for IPv6 and ZRTP

* Progess in SIP will come from open source firmware

* The 0cpm project is building that

* Current demo-phone is Grandstream BT200

* Anyone is invited to port to their own hardware!

http://reverse.0cpm.org/

| 0cpm firmerware OpenFortress*

http://reverse.0cpm.org/

info@openfortress.nl
http://openfortress.nl

OpenFortress
digital signatures

*

